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ABSTRACT

INTERNAL DELAM INATIO N DETECTION PROBLEMS USING A COMBINED  

IMPROVED-COUNTERPROPAGATION NEURAL NETW ORK  

AND GENETIC ALGORITHM TECHNIQUE 

By

Tran N. Phuong 

August 2013

Detection o f delamination in laminated composites is first formulated as a simulation 

and second as an optimization problem and solved by the new approach utilizing 

improved-counterpropagation neural networks and genetic algorithms, respectively. A  

recently developed improved-layerwise composite laminate theory is extended to model 

composite laminates with delamination. This new layerwise finite element model is 

employed to calculate natural frequencies o f cross-ply laminates with given delamination 

patterns placed at different locations. Improved-counterpropagation neural networks are 

trained to simulate dynamic responses from the finite element analysis. These artificial 

neural networks are chosen as function approximations which are developed on the 

available input-output data from a finite element model. Genetic algorithms with mixed 

type design variables are used to search the optimum delamination patterns associated 

with the given natural frequencies. Results with remarkable accuracy have been obtained 

in detecting the internal delamination using a combination o f both techniques.
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CHAPTER 1 

INTRODUCTION

Composite laminates are increasingly used in the construction o f aerospace, 

mechanical, civil, marine, automotive, and other high performance structures due to their 

high specific stiffness and strength, excellent fatigue resistance, and longer durability as 

compared to metallic structures. Composite laminates have also played an important role 

in weight saving. Additionally, their design flexibility allows engineers to carve out a 

niche as the material o f choice in a variety o f specialized applications. Delamination, 

which is an interlayer debonding or separation between individual plies o f the laminate, is 

a prevalent form o f damage phenomenon in laminated composites [1]. Delamination can 

often be pre-existing or generated during service life. For example, delamination often 

occurs at stress free edges due to the mismatch o f properties at ply interfaces and it can 

also be generated by external forces such as out o f plane loading or impact during the 

service life. Delaminations may not be visible or barely visible on the surface, since they 

are embedded within the composite structures. The existence o f delaminations not only 

alters the load carrying capacity o f the structure, but can also affect its dynamic response. 

Delaminations reduce the natural frequency, as a direct result o f the reduction in stiffness, 

which may cause resonance if  the reduced frequency is close to the working frequency.

In order to assure the successful implementation and improved reliability o f such 

structures, the detection and quantification o f delamination is an important technology 

that must be addressed.
1
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A ll load-carrying members o f structures continuously accumulate damage in their 

service environment. A ll types of damages in composite structures result in changes in 

stiffness, strength, and fatigue properties. Measurement o f strength or fatigue properties 

during damage development is not feasible because destructive testing is required. 

However, stiffness reduction due to damage can be measured since damage directly 

affects structural responses. The most widely used method for damage assessment is to 

identify the occurrence, location, and extent o f the damage from measured structural 

dynamic characteristics (e.g., natural frequencies and modal shapes). Since a change in 

stiffness w ill cause changes in the natural frequencies o f a vibrating system (whether the 

damage is localized or distributed), the measurement o f natural frequencies o f a structure 

at two or more stages o f its life can help locate the damage in a structure [2]. Therefore, 

the relationship between the physical parameters, such as mass and stiffness, and the 

dynamic characteristics, such as frequencies and mode shapes, must be determined by 

modal analysis.

Detection o f the location and size o f delamination in composite structures involves 

both an extensive computational effort and the mathematically challenging task of 

solving an inverse problem. There is no unique or exact solution to the inverse 

eigenvalue problem for any “real” mechanical system due to nonlinearities and strong 

couplings between the eigenstructure and the parameters o f the system. Moreover, the 

existence of a feasible solution cannot be guaranteed for an arbitrary real system. Since it 

is essentially an inverse multi-modal problem, usually a large number o f local optima 

exist and the traditional gradient-based technique may result in a trapped local optimum. 

Thus, in identifying the delamination pattern o f composite structures, global damage
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detection techniques based on the natural frequencies and mode shapes have been 

employed. This detection of delamination can be formulated as an optimization problem 

with an appropriately chosen objective function, which represents the quantified 

difference in vibration responses (e.g., natural frequencies and modal shapes) between 

measurements and predictions using analytical methods. To further complicate this 

problem, both continuous and discrete design variables need to be adopted because in 

general, the size and in-plane location o f delaminations are defined by continuous real 

variables, and the thickness location o f delamination is defined by discrete variables, 

since delamination only appear at the interface o f distinct layers.

In this research study, the delamination detection problem is formulated in M ATLAB  

codes as a multi-modal optimization problem with mixed type design variables. The 

current method comprises o f three distinct segments: finite element, counterpropagation 

neural network, and genetic algorithm. First, the natural frequencies are chosen as the 

structural response which w ill be measured. A  finite element model o f the damaged 

structure based on an improved-layerwise composite laminate theory developed by Kim, 

Chattopadhyay, and Ghoshal (2003) is employed to calculate the natural frequencies o f 

laminates with given delamination patterns. Second, to resolve the computational 

problem, an improved-counterpropagation neural network has been developed to simulate 

dynamic responses based on the input-output data o f the finite element model. This 

artificial neural network w ill be used as a function approximation with satisfactory 

accuracy to determine natural frequencies o f the delaminated laminate with various 

delamination patterns. Third, a search and optimization technique based on the genetic 

algorithm (GA) is adopted to find the global optimum in a multi-modal search space with

3



www.manaraa.com

continuous, discrete, or mixed design variables. For each potential solution in the current 

population (a pool of potential solutions), natural frequencies o f the corresponding 

delaminated laminate must be calculated in order to determine the objective (or fitness) 

function in genetic algorithm. The computational work w ill be very intensive if  the finite 

element model is used to calculate these frequencies directly. For this reason, the 

counterpropagation neural network was chosen to be the interactive module used to 

simulate the dynamic responses o f the delaminated laminates from the finite element 

model, and then to feed this saved data into genetic algorithm. Single internal 

delamination is the type of delamination configuration that w ill be considered in this 

research study. Excellent results have been obtained in detecting the internal 

delamination for delaminated plates using the combined technique o f finite element, 

counterpropagation neural network, and genetic algorithm.

4
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CHAPTER2

MECHANICS OF COMPOSITE LAM INATES

Introduction to Composite Lamina and Composite Laminates

A structural composite is a material system consisting o f two or more phases on a

macroscopic scale, whose mechanical performance and properties are designed to be

superior to those o f the constituent materials acting independently. The main

components o f composite materials are fibers and matrix. The fibers provide most o f the

stiffness and strength, and the matrix binds the fibers together, thus providing load

transfer between fibers and the composite and between the external loads and supports.

The basis for the superior structural performance o f composite materials lies in the high

specific strength (strength to density ratio) and high specific stiffness (modulus to density

ratio), and in the anisotropic and heterogeneous character o f the material. The latter

provides the composite with many degrees o f freedom, enabling simultaneous material

optimization with several given constraints, such as minimum weight, maximum dynamic

stability, cost effectiveness, and so on.

Because of the inherently heterogeneous nature o f composite materials, they are

conveniently studied from two points o f view: micromechanics and macromechanics.

Micromechanics is the study o f composite materials taking into account the interaction of

the constituent materials in detail. Micromechanics allows the designer to represent a

heterogeneous material as an equivalent homogeneous material, usually anisotropic.

Micromechanics can be used to predict stiffness (with great success) and strength (with
5
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less success). One objective o f micromechanics is to obtain functional relationships for 

the elastic constants o f the composite in the form:

where E, G, v, V, S, and A are modulus of elasticity, shear modulus, Poisson’s ratio, 

volume, shape o f reinforcement, and array (packing) o f the reinforcement, respectively. 

Macromechanics is the study o f a laminate’s response to loading based on the properties 

of each lamina and the stacking sequence o f the laminae. In macromechanical analysis, 

where the material is treated as quasi-homogeneous, the average material behavior can be 

controlled and predicted from the properties o f the constituents.

The basic building block o f a laminate is a lamina, which is a plane layer o f 

unidirectional fibers or woven fibers in a supporting matrix. A laminate is a bonded stack 

of laminae (plies, or layers) with various orientations o f principal material directions in 

the laminae. Thus, knowledge of the mechanical behavior o f a lamina is essential to the 

understanding o f laminated fiber-reinforced structures. Both the laminae and the 

laminate are assumed to behave as a linear elastic material, which can be described in 

terms o f the stresses, corresponding strains, and deformation hypotheses.

Classical Lamination Theory consists o f a collection o f mechanics-of-materials stress

and deformation hypotheses. By using this theory, one can consistently proceed directly

from the basic building block, the lamina, to the end result, a structural laminate. The

whole process is one o f finding effective and reasonably accurate simplifying

assumptions that enables the reduction o f a complicated three-dimensional elasticity

problem to a solvable two-dimensional mechanics o f deformable bodies problem. Thus,

the transition from the lamina to the laminate level entails several simplifying

6
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assumptions that are commonly practiced in the real world.

Throughout this section o f the thesis, the focus on macromechanical behavior o f 

composite lamina and composite laminates are discussed [3-6]. The intention is to 

provide a basic understanding o f the following aspects of structural behavior: the stress 

and strain behavior o f an individual lamina, the variations of stress and strain through the 

thickness o f the laminate, the relation o f the laminate forces and moments to the strains 

and curvatures, and the defining characteristics for the various types o f composite 

laminates. This w ill serve as a precursor to the background forming the basis o f this 

research.

Macromechanical Behavior o f Composite Lamina 

General Anisotropic Material

When there are no symmetry planes with respect to the alignment o f the fibers, the 

material is referred to as generally anisotropic. The state o f stress at a point in a material 

can be represented by nine stress components <r(> (where i , j  =1,2, 3). Sim ilarly, the

state o f deformation is represented by nine strain components, e0 . In the most general

case, the stress and strain components are related by a generalization o f Hooke’s law as 

follows:

= }9.tl ’ }9jtl = (2)

where [c ] is the stiffness matrix and [5] is the compliance matrix.

In general, it would require 81 elastic constants to characterize a material fully. 

However, the symmetry o f the stress and strain tensors ( er = a jt, etj = s ]t ) reduces the

number o f independent elastic constants to 36. Thus the state o f stress (or strain) at a

7
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point can be described by six components o f stress (or strain).

= ftjcl = [*̂ ]6j6 I*7} 6*1 (3)

Elastic strain energy considerations require additional symmetries o f the stiffness and 

compliance matrices ( CIJ = Cfl, StJ = Sjf). Because o f this symmetry, only 21 o f the 36

elastic constants are independent in both [C ] and the [5] matrices.

It is customary in mechanics o f composites to express the order o f stress and strain in 

tensor, contracted, or engineering notation as follows:

^ 1 1

° 2 2 <72 ^ 2
n o r m a l

£ n  " 
£ 22

*1
s 2

r
* i
s 2

* 3 3 ° 3 ( J 3 *33 * 3 * 3
c r 23 ^ 4 r 23 2 s 23 * 4 y  23
<t 13 7 13 s h e a r

2 e n * 5 y 13
C i 2

P i . r i 2 . P ,S X2 , * 6 . 7 . 2 .

(4)

Tensor Contracted Engineering Tensor Contracted Engineering

W ith the foregoing reduction from 36 to 21 independent elastic constants, the stress and 

strain relations for an anisotropic body can be written in engineering notation as

<*1 c 12

° 2 C21 c 22

C3] c32

X23 Qi C42
X13 Q. ( '5 2

-X 12. Q. ( '6 2

V X Sn
s2 s22

_S 3. S32

m<N S42
Yl3 sn S52

J l 2 . s6i S62

(5)

(6)

A general anisotropic material under uniaxial tension undergoes axial, transverse, and

8
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shear deformations. Under pure shear loading, the material undergoes both shear and 

normal deformations. Thus, one applied stress w ill be induced to all 6 strains and 1 strain 

is a summation o f all 6 stresses, as shown below:

a, = o

j =1

8j —
y  23 =  SU ® > Yl2 — S16®

64 = Y23 = 5(1̂ 1 + £42^2 4̂3CT3 *$44̂ 23 ‘̂ 45̂ 13 + ‘̂ 46̂ 12
(7)

Monoclinic Material

When there is a symmetry plane with respect to the alignment o f the fibers, the 

material is referred to as monoclinic. In the symmetry plane (plane 1-2), there is no 

coupling effect between normal stress (<r,, <j 2) and out-of-plane shear strain ( / 23, yn ).

Consequently, this reduces the number o f independent elastic constants to 13. The 

nonzero and zero elements o f the stiffness and compliance matrices can best be seen 

when the stress and strain relations are written in the forms:

"C„ r 12 CI3 0 0 < V
f

<72 Cn c 22 ^ 2 3 0 0 2̂6 e2
c 13 c 23 r

33 0u 0 c 36 * £3.>
T23 0 0 0 C44 S45 0 y 23
hi 0 0 0 C45 S55 0 7X3

T l 2 . c *
c 26 C36 0 0 c«_ 7l2.

(8)

y23

Yn
Yn

S n S n S a

S n S22 S23

S a S23 S33
0 0 0

0 0 0

S.6 $ 2 6 ^36

0
0
0

0
0
0

J16

?26

36

*44 S45
S45 s55

0
0

0 0 5,66

CTi

23

13

M2

(9)

The elements o f the compliance matrix can be expressed in terms o f the following 

engineering constants:

9
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y  23

7 x 3

Yl2

1 - v 2, ~ V 31

Ei e 2 e 3
"V,2 1 _ V 32

Ey E2 e 3
“  V 13 ~~ V 23 1

Ey e2 E>

0 0 0

0 0 0

*ll6 n26 T136
Ey e 2 e 3

0

0

0

0

0

0

H6L
G12
6̂2
1̂2

^61
1̂2

1

w23
4̂5

a 23

o

Hsi
g 13
1

1̂3

0

0

'12

23 

T13 
LT 12 J

From the symmetry of the compliance matrix we conclude that

V 12 _ V 21 13 31 V 23 _  V 32

Ex

1̂6 _ 6̂1 2̂6 _ 6̂2 3̂6 _ 6̂3 *145

M2 '12 '12 '23

*154
13

where

EJ = modulus of elasticity in the fiber direction,

E2, E3 = modulus of elasticity in the direction transverse to the fibers, 

G12 = in-plane shear modulus,

G23, G13 = out-of-plane shear modulus, 

vn = in-plane Poisson’s ratio, 

v23, v,3 = out-of-plane Poisson’s ratio, 

r)n = in-plane shear coupling effect, 

tj23, 7 i3 = out-of-plane shear coupling effect.

(10)

(11)

10
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Orthotropic in Principal Material Directions

Unidirectional fiber composites or fiber-reinforced composites can be regarded as 

orthotropic materials which possess three mutually orthogonal planes of symmetry. The 

directions perpendicular to these planes are called the material principal directions. It is 

customary to denote the fiber direction as 1-axis, and the transverse directions as 2 and 3. 

For an orthotropic material in principal coordinate, the stiffness and compliance matrices 

further reduce the number of independent elastic constants to nine in the stress and strain 

relations as:

y  2 3  

y  13

"C „ c 12 c . 3 : 0 0 0  " £1
<J21 C 12 c 22 C 23 1 0 0 0 £ 2
a ,* —=1 C 13 c 23 C 3 3 1 0 0 0 £3
X23 0 0 0 j C u 0 0 Y23

X13 0 0 0  ! 0 C 55 0 Yl3

*12. 0 0 0  ! 0 0 c «_ J 12.

8 1 ~ s n 5 J2 5 , 3 : 0 0 0  ' 1
S I S u 5 22 S23 0 0 0 a 2
8 3 S a *̂ 23 ^33 ! 0 0 0 a 3

723 0 0 0  \ s „ 0 0 *23
Y13 0 0 0 ! 0 S55 0 *13

.Yl2. 0 0 0  ! 0 0 V T12.

-

1 - V21 " V31 0 0 0
E x e 2 £ 3

"V ,2 1 ~ V32 0 0 0
e 2 E , I

V13 ~ V23 1
0 0 0 <

E x e 2 _ A _ , <

0 0 0
1

-  0 0
1

^23
1

1 1
0 0 0 0 -  0

G 13

0 0 0 0 0
1

G n _

23

(12)

(13)

(14)

11
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The strain-stress relation can then be expressed in terms of engineering constants as 

shown in equation (14).

As seen above, the relations between compliances and engineering constants are

fairly simple. This, however, is not the case for the relations between stiffness Cy and 

engineering constants. The elastic moduli are referenced to this particular coordinate 

system and denoted by Ex, E2, E3, G23, G13, Gn, v23, vl3, v12. Note that there is no 

interaction between normal stresses <r„ a 2, o 3 and shear strainsy23, y13, yu , which

occurs in anisotropic materials. Similarly, there is no interaction between pure shear 

stresses and normal strains as well as none between shear stresses and shear strains in 

different planes when these stresses are in the 1,2, 3 principal material directions. 

Orthotropic Material with Transversely Isotropy

An orthotropic material is called transversely isotropic when one of the three 

mutually orthogonal planes of material symmetry is a plane of isotropy (mechanical 

properties are the same in all direction), as shown in Figure 1. Many unidirectional 

composites with fibers packed in a hexagonal array (or close to it) can be considered 

transversely isotropic (i.e., aramid/epoxy, carbon/epoxy, and glass/epoxy composites). In  

the isotropic plane (plane 2-3), which is normal to the fibers in direction 1, the subscripts 

2 and 3 are interchangeable in the material constants. This further reduces the number o f 

independent elastic constants to 5 (Ev E2, Gn , v23, v12). The elements of the stiffness 

and compliance matrices can best be seen when the stress and strain relations are written 

in the forms

12
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y  23

r 13 

y 12

- v 21 -V 21

-v ,12 -V 23

- V ,12 23

A .
0

0

0

0

0

0

0

0

0

0

0

;~2(r+v~T
e 2

0

0

0 0 

0 0 

0 0 

00

1

G,12

0

cr.

23
ri3
l 12

(17)

Special Orthotropic Lamina

Any layer is orthotropic in its own material coordinate system (1 ,2 , 3). A layer is 

called specially orthotropic when it is also orthotropic in the global coordinate system,

which happens only for orientations 0  = 0° and # = 9 0 °, or for layers reinforced with 

balanced fabrics. Then, the stress and strain relations are expressed in terms of only 4 

independent elastic constants (Qn, Q22, On* 0k>) ° r S22, Sl2, S66) as shown below:

For 0 = 0°,

<*x V 0 > , 0 1 2

a y
> =  < ct2 > = Qn 0 2 2

T xy T l 2 . 0 0

0

0

056.

V
j  e2 k < s > = < £2 1>=
U 12J . V Y12J1

X
s n

0

‘-'12
S22
0

0

0

6̂6 M2

(18)

For 0 = 90°,

M 022 012 0 "

h ** V ^22 S\2 0 '

h
°y > = <a2 > = 012 0,1 0 j  S2 >■ < t > ~  < e2 > = X Sn 0 j  CT2 >

. V K 2. 0 0 066_ lY l2. y*y\ Yl2. 0 0 V l X12.

(19)

An orthotropic layer that is oriented at an angle not a multiple of 90° from the global

coordinate system is called generally orthotropic. Therefore, QX6, Q26, Sl6 and $26 are

14
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different from zero for a generally orthotropic layer.

Isotropic Material

An orthotropic material has three mutually perpendicular planes of material symmetry, 

while an isotropic material has an infinite number of planes of material symmetry 

through a point. Thus, isotropy is a special case of orthotropic material. The elastic 

properties of isotropic materials are invariant with respect to directions. As the subscripts 

1,2, and 3 in the material constants are interchangeable, the stress and strain relations are 

reduced to:

C, 1 C, 2 C, 2 1 0 0 0
£72 1̂2 1̂1 Ct2 j 0 0 0 2̂
°3 Ci2 Ca c „  . 0 0 0 £3
2̂3 0 0 0 I (C - C a )j2 0 0 723

*13 0 o o | 0 (C „ -C ,2)/2 0 7X3
J\2. 0 o o ! 0 0 (C „ -C ,2)/2J 712 ̂

V Stl Sj 2 St 2 1 0 0 0
<
G

s 2 s a Su 5,2 0 0 0 G 2
h . 5,2 5,2 5,, | 0 0 0 G 3
y23 0 0 0 ] 0 0 T23
Yx 3 0 0 0 j 0 2 (5 „ -5 ,2) 0 T\3
Y\2 . o o o ! 0 0 2 (5 „ -5 ,2)_ J\2

Thus, an isotropic material is fully characterized by only two independent elastic 

constants, the stiffness C,,, C,2 and the compliances 5,,, 5,2. It should be noted that the

diagonal terms (C„ , Su i = 1, 2, 3, 4, 5, 6) are always non zero for all kinds of composite 

materials.

The conclusions previously discussed regarding the required number of independent 

elastic constants for the various types of materials are summarized in Table 1.

15
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TABLE 1. Independent Elastic Constants for Various Types of Materials

Material No. of Independent Elastic 
Constants

General anisotropic material 81
With symmetry of stress and strain tensors 36
With elastic energy considerations 21

Monoclinic material 13
Orthotropic in principal material directions 9
Orthotropic material with transversely isotropy 5
Special orthotropic lamina 4
Isotropic material 2

Coordinate Systems

There are two coordinate systems that are used in composites design. The material 

coordinate system (denoted by axes 1,2, 3) has the 1-axis aligned with the fiber direction. 

The 2-axis is perpendicular to the fibers in the plane of the lamina. The 3-axis is 

perpendicular to the plane of the lamina (plane 1 -2). Each layer has its own material 

coordinate system aligned with the fiber direction.

The global coordinate system (denoted by axes x, y, z) is common to all the layers in 

the laminate. The orientation of the global system is chosen for convenience during the 

structural analysis. Therefore, it may be aligned with the boundary of the part being 

analyzed, with the direction of the major load, etc.

Off-Axis Stiffness

Practical composite structures have more than one layer because the properties in the 

transverse direction of a layer are relatively low when compared with the longitudinal 

properties. Therefore, several layers are stacked in different orientations so that 

reinforcements (fibers) are placed along all directions of loading.

16
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A laminate is a set of layers with various fiber orientations which are bonded together 

to form a plate or shell. Before developing laminate properties, it is necessary to learn 

how to transform stresses, strains, stiffnesses, and compliances from the material 

coordinate system (1 ,2 , 3) to a global coordinate system (x, y, z ). Once the properties 

of individual layers are known, the properties of a laminate can be obtained by combining 

the properties of the layers that form the laminate.

Stress and Strain Transformations

In stress analysis, sometimes a coordinate system x-y is set up which does not always 

coincide with the material principal axes, 1 and 2. The two sets of stress components 

with respect to these two coordinate systems are related by the transformation matrix [7^.]. 

In the same manner, the strains with respect to the two coordinate systems are related by 

[T , l The angle# is measured in a positive counterclockwise fashion from the x-axis to

the 1-axis, as shown in Figure 2. Then, the stress and strain components referred to the 

principal material axes (1 ,2 ) can be expressed in terms of those referred to the loading 

axes (x, y) by the following transformation relations:

(22)

(23)

where c = cos#, and s  = s in# .

By inversion of the relations above we obtain

17
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CF

W j

T:xy

° i f ^ i
■ = [T J 0 )Y< °2 ■ = fc ( - 0 )} > =

\ J \2, l r i2.

"".V
“-

‘---
 

J
II F
T

'w
'

.. 
^..

.. V
s 2 'V' II /'-

N 3

V
e2 > =

Jn, 7X2,

2 2 c s 
2 2 s c

cs - c s  c2 -  s2

- 2  cs 
2 cs crn

12

(24)

s
2 cs

s - c s
c2 cs
■2 cs c2 —s 2 7x2I (25)

Note that the inverses [Ta(9)]~' and [^(G)]”1 can be obtained by replacing 0 with -  6 into 

[Ta (e)] and [71(9)], respectively. Also, it should be noted that the laws of stress and strain 

transformation are independent of material properties.

off-axis

FIGURE 2. Coordinate transformations.

Stiffness and Compliance Transformations

In most structural applications, composite materials are used in the form of thin 

laminates loaded in the plane of the laminate. Thus, composite laminae (and laminates)

18
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can be considered to be under a condition of plane stress, with all stress components in 

the out-of-plane direction (3-direction) being zero, that is,

a 3 = 0, t23 = 0, rt3 = 0 (26)

where the out-of-plane strains

Y 23 = Y \ i  =  £ 3 =  + $ 2 3 ^ 2  ^ ® (27)

The orthotropic stress-strain relations, Eq. (12), are reduced to

V " C„ c'-'12 C.3 ! o 0 0 " V
0-2 C, 2 c22 ^23 ! oi 0 0 s 2

0 c13 c23 c33 i 0 0 0 s 3

0 0 0 0 ! C 44 0 0 0

0 0 0 0 ! 0 c 55 0 0

Tl2. 0 0 0 ! 0 0 C 66_ 7 X2 ,

(28)

After eliminating £,, the in-plane stress and strain relations for an orthotropic layer 

under plane stress can be expressed in terms of only four independent elastic constants, 

that is, the reduced stiffnesses Q n , Q 22, Q n , and or the compliances (S',,, S 22, S u ,

and as show below:

°X £ 1 Qxx 0 1 2 0 S i

C$2 S 2 Q\2 Qn 0 “ S 2

* 1 2 . J 12, 0 0 0 5 6 _ J 12

S i V X Sl2 0  ' V
« s2 ■ = [«} <*2

► = (S', 2 S22 0  • CJ2

Y l2 . * 1 2 , 0 0 6̂6 * 1 2 .

(29)

(30)

The relations above can be expressed in terms of engineering constants by noting that

Qu =

Qn =

22

1 VI2V21 1̂X̂ 22 *̂ 12
e2 sn

s„=—

1 v,2v2, *S',,(S'22 (S', 2 *22 =

Ey
1
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0,
vnE2 - S,12

12 l - v 12v21
5 - - - V *2 °12 “

- V 21

066 ~ 02  —

SUS22 Su Ex

J -  5 - J -c  6 6  “  r

6̂6 12

(31)

The stress and strain relations in equations (29) and (30) show that, when the lamina 

is loaded along the principal material axes, there is no coupling between normal stresses 

and shear deformation and between shear stress and normal strains. This is not the case 

when the lamina is loaded along the arbitrary axes x and y. In that case, the stress and 

strain relations in global coordinates take the form:

a * l
r  i " 0 , i 0 1 2 0 1 6

■ = b l 0
► = Q y2 O n 0 2 6

y * . 0 1 6 Q 2 6 0 6 6

e,
(32)

l \ = m ° y
> =

r v  j r
H

43

01 02 06
5,2 Sj2 0 6
06 *$26 06

—  V yx ixyj

-  V xy

xjy iyjy

E..

E y

*!>

Gxy
xy.y

xy

xy

iOy
Zxy

(33)

where the transformed reduced stiffness [(?] are related to the principal lamina reduced 

stiffness [q ]  by:

Qn = Q u c4+ 2{QU + 2Q j s 2c2 + Q22 s4 

0 2 2  =  0 1 1  ^  ~*~2(Qu  +  2 Q 66) s  C +  Q 22 C

02 = (0, + Qn -  40» V<? + o d ?  + c4)
06=(e„+e22 -202 -2&6>v+a6(s4 +c4)
016 =  (011 ~ 012 _  -̂Q(̂ )SC + (012 — 022 +  ^066 ) ‘S C

026 = (0 i i — 0i2 ~ 2£)66 )•? c + (Qn — Q22 + 2Q66 )sc

(34)
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Similarly, the transformed compliances [iSjare related to the principal lamina 

compliances [5 ] by:

Sn = -}^ = Su c•+(2Sa + S J s ‘S + S ^is•
Ex

S n = ^ r  = Sus‘ + (2Sn + 5js V + c4
5

5,2 = - T r L = - r r L = {Sn +S 21 - S j s V  +S 12( /  + c4)
x y

«« = = 2(25,, + 25,2 -  4S.2 -  5 *  )s V  + S ^ 4 + c4)
xy

s,t = ̂  ^ = (25,, - 25,2 - Sjsc2 + (25,2 —2522 + Sjs2c
'xy

o _  ^  n‘Jo/; —26 — ^ r -  =  =  (25,, -  25,2 -  S« * *  +  (2« ,2 -  25!2 +  SM )sc!
h y °x y

(35)

The transformed compliances can be expressed in terms of engineering constants as:

Sn = —  =— c4 +
Ex Ex

c 1 _ 1 4S21 — —  —— s + 
E E,y 1

vG12 El j  
'  1 2v12"

V 1̂2
c . . - V  /
12 E, E.,

2 2 1 4s c + — c

s<* =
1 r

G
=  2

xy

^12 J E 2

— + — V 2c2 - ^ - ( s 4 + c4)
{E x E2 Gi2J Et K '
2 , 4v12 J _ ) j  2 . J _ /  4 , 4 I

Ex E2 Ex Gu j
2 2 s c  +

rr _ l̂x,xy _ _
1 6  T7 /m

E x GXy

2 2v
- +  -

12 1 A

o   l̂y,xy   l̂xy,y _
*̂ 26 “ Gxy

E\ El G, 
2 2v

5C3 - I

12

2 2v
- +  -

12 1

12 y E2 Ex g 12

12 U3C-
2 2v12 1

E2 Ex Gn

s c

sc

(36)

Note the coefficients Ql6, 0 26 ^ 0 and 1̂65 S26 & 0 after the transformation. I f  the global

axis does not coincide with the material axis when the shear stress is applied, not only the 

shear strain but also the normal strains are produced.
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Macromechanical Behavior o f Composite Laminates

A laminate is two or more laminae bonded together to act as an integral structural 

element. The two basic questions of laminate analysis are: (1) What are the conditions 

that the laminae must meet to be a laminate? and (2) How w ill a laminate respond to 

loading, i.e., imposed forces and moments? The various laminae are oriented with (local) 

principal material directions at different angles to the global laminate axes to produce a 

structural element capable of resisting load in several directions.

The laminae are combined to create a laminate in order to achieve the largest possible 

bending stiffness for the materials used. For example, let’s first consider that the two 

beams are not fastened together and loaded at midspan by a concentrated force. In 

contrast, the same two beams could be fastened together by nails, screws, or bonding.

The deflection is less for the bonded beams than the unbonded beams by a factor of four! 

Thus, bonding laminae together can result in a compellingly large increase in bending 

resistance.

Basic Assumptions and Restrictions of Classical Lamination Theory

It is apparent that the overall behavior of a multidirectional laminate is a function of 

the properties and stacking sequence of the individual layers. The so-called Classical 

Lamination Theory predicts the behavior of the laminate within the framework of the 

following assumptions and restrictions:

1. Each layer (lamina) of the laminate is quasi-homogeneous and orthotropic.

2. The laminate is thin with its lateral dimensions much larger than its thickness and 

is loaded in its plane only, that is, the laminate and its layers (except for their edges) are 

in a state of plane stress (a , = \ X2 = xyz = o ).
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3. A ll displacements are small compared with the thickness of the laminate 

(|w|, |v|, |w| «  h ).

4. Displacements are continuous throughout the laminate.

5. In-plane displacements vary linearly through the thickness of the laminate, that is, 

u and v displacements in the x- and ̂ -directions are linear functions of z.

6. Straight lines normal to the middle surface remain straight and normal to that 

surface after deformation. This implies that transverse shear strains yxz and yr_ are zero.

7. Strain-displacement and stress-strain relations are linear.

8. Normal distances from the middle surface remain constant, that is, the transverse 

normal strain ez is zero. This implies that the transverse displacement w is independent 

of the thickness coordinate z.

Strain and Stress Variation in a Laminate

Knowledge of the variation of stress and strain through the laminate thickness is 

essential to the definition of the extensional and bending stiffnesses of a laminate. The 

laminate is presumed to consist of perfectly bonded laminae. Moreover, the bonds are 

presumed to be infinitesimally thin as well as non-shear-deformable. That is, the 

displacements are continuous across lamina boundaries so that no lamina can slip relative 

to another.

The midplane displacements w°and v°in the jc- and jy-directions and the out-of-plane 

displacement w in the z-direction are functions of x andy only:

u = u (x ,y ) , v = v (x ,y ) ,  w = f ( x ,y ) (37)

The rotations of the jc-  and >>-axes are
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dw dw
a x ~ ~ a ^ ’ a y ~~dy

Then the strain components on the midplane (or reference plane) are expressed as

„ du „ dv „ du dv°
£ — -------- , £ — ---------,  Yxv ~ ----------- 1--------

dx dy dy dx

and the midplane curvatures are

(38)

(39)

K , =

K ,

- d a x _ d2w
dx dx2

II>>

£1 d2w
dy dy2

- d a x day _

dy dx

(40)

d2w
dxdy

The laminate strains have been reduced to £x, ey, and y  by virtue o f the Kirchhoff 

hypothesis. That is, e: = yxz = yyz = 0 . For small displacements, the classical strain- 

displacement relations of elasticity yield

du du d2w
s r = —  = ------- z — t  = £ + z x r

dx dx dx
dv dv° d2w£v =  = - - - - - - - - - - -Z T = £ + ZK

y dy dy dy y
du dv du dv° _ d2w

r  = - - - - - - - - 1------- = -------- + -- - - - - - - - - - 2  z - - - - - - - - - - - - = y  + zk
** dy dx dy dx dxdy 1 * v

(41)

After substitution of equations (39) and (40) into (41), one can relate the strains at any 

point in the laminate to the reference plane strains and curvatures as follows:

\ r .

o£
X K*

► = < o£ > + z< >
y y

>
o

Y*y J

(42)

The main reason for separating the strains into in-plane strains (£°x,£°y, y^) and
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curvatures (Kx,Ky, k^) is for convenience. The underlying motivation is to write all the

functions (displacements, stresses, and strains) in terms of only two variables (x and y) to 

simplify the analysis. For most plates, if  only in-plane forces are applied, only

y°xy) are induced and it is not necessary to consider the curvatures. Similarly, if

only moments are applied to the plate, then only the curvatures need to be computed.

Since the thickness of the laminate is small compared with the in-plane dimensions of 

the plate, every layer is in a state of plane stress. Therefore, the stress-strain relations for 

a layer k in material coordinates are

(43)
o t

k
" Q n Q n 0  *

k

<r2 > =
Q n Q 22 0 < s 2 >

J l 2 , 0 0 Q b6_ S n ,

After transformation, the stress-strain relations in global coordinates become:

k "a. 012 016
k

' ° y > = 012 O i l 026 <

Tjty 016 026 066 r * y .

(44)

By substitution of the strain variation through the thickness (equation (42)) into the 

stress-strain relations (equation (44)) the stresses in the k * layer can be expressed in 

terms of the laminate middle-surface strains and curvatures as:

O x ]f Q n 012 016
k O

S Q n 012 016
k

K *

012 O i l 026 < O
£

y
> +  Z 012 022 026 < K y >

T
xy , 016 Q 26 066

0

r 016 026 066 K *y

(45)

From equations (42) and (45), it is seen that, whereas the strains vary linearly through 

the thickness, the stresses do not, because of the discontinuous variation of the 

transformed stiffness matrix [<g]ffom layer to layer. Instead, the stresses are piecewise
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linear (i.e., linear in each layer, but discontinuous at boundaries between laminae). 

Resultant Laminate Forces and Moments

Because of the discontinuous variation of stresses from layer to layer, it is more 

convenient to deal with the integrated effect o f these stresses on the laminate. The 

stresses are integrated over the thickness (h) of the plate to obtain the resultant forces and 

moments on a laminate as

The integrations in (46) span over several layers. Therefore, the integrals can be divided 

into summations of integrals over each layer

z = through-the-thickness coordinate of a point in the cross section 

Nx, Ny = normal forces per unit length

N  = shear force per unit length

Mx, M y = bending moments per unit length

Mxy = twisting moment per unit length

n = number of layers in the laminate 

k = layer number counting from the bottom up 

z k, zkA = z-coordinates of the upper and lower surfaces of layer k.

(46)

(47)

where
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Laminate Stiffnesses

Substituting equation (45) for the layer stresses in equation (47), we obtain

n

\ N>
II M

N r v
k=l

011 Qn 016
012 022 026
016 026 ^ 66

k
8°

X z k
f

Q n Q ii 016
< 8°

y

f* xy  ^

► I dz  +
z t-1

Q }2 

Q 16
Q n

Q 26

02  6 
066

k r 1

zu
< • J zdz >

. 7 zk~ 1

(48)

and

rr-_ _ _ k r-_ _ _ k

n Qn 012 016 8 °X zk 011 012 016
\ M y II M 012 022 026 < 8 °

y
> J zdz  + 012 022 026 < Ky

M xy\1 *=1 016 Q 26 066 f zk-1 016 026 066 Kxy

Ky I  J z 2dz

zk-l
(49)

/— Layer Number

N 7

Z 0

Zi

2n-i

7
h

Middle Surface

FIGURE 3. Geometry of an N-layer laminate.

In the expressions above, the stiffnesses [q  ] * , reference plane strains [s° j t>,, and
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curvatures [xrj^ are taken outside the integration operation since they are not functions of

z. O f these quantities, only the stiffnesses are unique for each layer k, whereas the 

reference plane strains and curvatures refer to the entire laminate and are the same for all 

plies. Thus, [e0]^ and [k-]^ can be factored outside the summation sign as follows:

k L  = Els! J* [4+ ZlST]** IkL

Y \ o \ ( z k - z k_x)  [ s i +  - Y \ q ] ( z I - z I x)
*  k=\

[k L (50)

M , = M xy

k l+  ~ ± l Q h * i - zL )  h*
A:=l J k=1

(51)

with

=[s][4+M4

4 = -  z»-.)=£ o/  <* u j = i, 2,6
k=l

B» y = i .  2 .«
 ̂*=1 *=1 /  j  A

(52)

o # = 4 a * f e - z L ) = l 0 , ‘
■3 A:=l k=l

h zk + —  
v 12y

i, j  = 1, 2, 6

The coefficients ^ , Bt] and Z> are function of the thickness, orientation, stacking

sequence, and material properties of the layers. Each coefficient has a particular role in 

the analysis of the laminate, as follows:

Ay = extensional stiffnesses, or in-plane stiffnesses because it directly relates in-plane
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strains (e°x,ecy, y^) to in-plane forces(Nx,Ny, N^).

By -  bending-extension coupling stiffnesses because it relates in-plane strains to

bending moments and curvatures to in-plane forces. This coupling effect does not exist 

for homogeneous plates.

Dy = bending or flexural stiffnesses because it relates curvatures (K x ,K y , Kxy)  to

bending moments (Mx, M y, Mxy ).

zk = coordinate of the middle surface of the A1*1 layer (Figure 3).

t = layer thickness.

Thus, in full form the force-deformation and the moment-deformation relations are

A "4 , A\2 A\6
O

e* "4 , B\2 Aa" K,
A > = A \ 2̂2 2̂6 A

O ► + B21 A  2 A  6 s >

A i 5̂2 A e] O

y*y) A t A 2 a 6_ V

~BU B\2 V K A i A 2 A * '
My ► = 2̂1 2̂2 B26

0

r y > + A i D22 A a S
6̂2 B66_ 0

y*y. .A , A 2 D66 _ .*7

(53)

(54)

The expressions above can be combined into one general expression relating in-plane 

forces and moments to reference plane strains and curvatures:

\ A  1 " 4 . 42 4a A , B\2 Aa"
O

4A A2, a22 4a A i A 2 Aa
, N» 4 i _ 4 i  _ ■4a uA L__4i_ Aa

4>' B\2 4 7 A i Dn 'A a '
M y A i B22 B26 A i D22 A a a:

.A . B(a 4 aa A , A 2 Aa_
.F

(55)

or, in brief,
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-N- \  =  
M )en

a_'l b 1 IV1
L * U > L W .

(56)
6x1

The 6x6 stiffness matrix in (55) is composed of three submatrices, [A], [5], and [D], 

each 3x3 in size. A ll three are symmetric matrices, that is,

4  = 4 „  4 = 4 „  Dfj = Dj, (/, y = l , 2 , 6 )  (57)

Equations (55) are called stiffness equations because of the analogy of Hooke’s law 

a  = Ee , where E is the modulus or stiffness of the material.

Laminate Compliances

Since multidirectional laminates are characterized by stress discontinuities from ply 

to ply, it is preferable to work with strains, which are continuous through the thickness. 

For this reason it is necessary to invert the load-deformation relations, equation (55), and 

express strains and curvatures as a function of applied loads and moments, as follows:

4

o

Is .

Ky
Kxy

o

K
, 4 II—

A
.

Kx
Ky

K*y.

an aU “l6 \b u b\2
an a22 a26 \ 2̂1 b22 2̂6
<*16 a26 “66 ! be, bbi bee
bn b2l b6l j dn du d\6
bn b22 b$2 | 1̂2 d12 2̂6
A« 2̂6 bM ! 1̂6 2̂6 6̂6

K b\2 b\e
sym b2] b22 2̂6

A  L . _b_62_
\ C 1>21 ~b67
\2 b22 b(,2 sym
\e 2̂6 bee

Nx
Ny

M x
M y

Nx
Ny

Mx
My
M

(58)

xy

(59)

or, in brief,

\ £ _

\K
6 jc1

~A IB ] - i
fjv ]L = a ! b

B \ D. 6x6 [Mj 6x1 P T ! d 6 jc6ft. (60)

30



www.manaraa.com

Here, matrices [a], [/>], and \d\ are the laminate compliance matrices and[&]T is the 

transpose of matrix \b\ obtained from it by interchanging columns and rows.

Computation of Stresses

Once the [a ], [5 ], and [/)] matrices have been formulated, strains and curvatures at the 

middle surface can be computed by solving (58) for a given set of stress resultants. Once 

the middle surface strains y ° ) and the curvatures (tcx,tcy, k^) are known, the

strains (sx, ey, y  ) can be computed at any point through the thickness of the plate using 

(42), which is repeated here for convenience

ex £
X

► =  <
0

£ > +  z< K.
y y y

I V
0

r I V

The stresses can be computed on each layer using the constitutive equations of that 

particular layer, (44), which is repeated here

<7* 011 012 016
► = 012 02 2 02 6 -

016 026 066 _ A -

where the superscript (k) indicates that these equations apply to the layer.

Failure Criteria

Failure of fiber-reinforced composites may be caused by fiber buckling, fiber 

breakage, matrix cracking, delamination, or by a combination of these factors.

Local fiber buckling, or microbuckling, reduces the compressive stiffness and 

strength of the laminate. Microbuckling does not necessarily lead to immediate failure 

because the surrounding matrix supports the fibers. The properties of the fibers and the
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matrix greatly affect the onset and magnitude of fiber buckling and result in losses in the 

compressive properties of the laminate.

One o f the main roles of the fibers is to carry tensile loads. When dry fibers (with no 

matrix surrounding them) break, they, of course, can no longer carry tensile loads. When 

the fibers are embedded in a matrix, the matrix acts as a bridge across the break and 

transmits the load across the gap created by the breakage as well as from the broken to 

the adjacent fibers. Fiber bridging, as this phenomenon is called, is the main reason that 

the tensile strengths of unidirectional, continuous fiber-reinforced composites are higher 

than the tensile strengths of dry fiber bundles.

Matrix cracking frequently occurs in composite laminates. In itself, matrix cracking 

generally does not result in the ultimate failure of a laminate. Nonetheless, matrix cracks 

have many detrimental effects: they facilitate moisture absorption, reduce the matrix- 

dominated stiffnesses of the laminate and, last but not least, may propagate into the 

interface between adjacent layers, initiating delamination.

Delamination is a separation of adjacent layers that may be introduced either during 

manufacture or subsequently by loads applied to the laminate. For example, loads due to 

transverse impact by an object on the laminate are a frequent cause of delamination. 

Delamination reduces the bending stiffness and strength as well as the load carrying 

capability of the laminate under compression. Significantly, under repeated loading the 

size of the delamination may increase to a critical point. Like the behavior of a crack in 

metal, once the critical size is reached, the growth of the delamination becomes unstable, 

leading to a rapid loss of compressive strength.
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Procedures of Classical Lamination Theory Analysis

In conclusion, Classical Lamination Theory consists of a comprehensive set of 

deformation hypotheses leading to the force-strain-curvature and moment-strain- 

curvature relations of equation (55), where the physical significances ofAv,BiJ, and Djj

have already been labeled. The procedures of Classical Lamination Theory are 

summarized in Table 2.

TABLE 2. Procedures of Classical Laminate Theory Analysis

Step Statements Procedures o f each step Notes

1

E\> E2, Gn, vl2, tply 
F\t> FXc, F2l, F2c, F6 
Sk ( t  = l,2,...,n)

—»o, e analysis 
-»  failure analysis 
-»  stacking sequence 
—» given or calculate

failure analysis use: 
Tsai-H ill,Tsai- Wu 
M ax o, M ax e 
Safety factor, FPF

2 calculate \Q] usqEx, E2, Gn, v12

3 calculate Q
k

use Q], and#*
4 calculate A M { d ] use Q \,  tply, and#* k = 1 ,2 ,. . . ,  n
5 calculate [ 4 M II 'S

T inverse matrix

6 solve je°}, {k} ii

__
i_

_
a

jo
1 ..

...
 

1

{ m }

7 calculate {e}* {£U = k } + z W
M = o
{A f}#0  =>{e)‘ = p } + z {k}

8 calculate 2 stresses 
for each layer

9 calculate 2 stresses 
for each layer M L - f c f e M

10 calculate 2 strains W - [ s M
11 failure analysis safety factor o f each fly

Note: z can be at mid-layer, or at interface between two layers. When {m }= 0 , strain is 

a constant through the laminate thickness. When {m} *  0, strain is a linear function of z .

Classical Lamination Theory allows for the calculation of forces and moments i f  the
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strains and curvatures of the middle surface (or vice versa) are known (step-6). This 

enables the calculation of laminae stresses in the laminate coordinates (step-8). Next, one 

can transform the laminae stresses from the laminate coordinates to the lamina principal 

material directions (step-9). Finally, one would expect to apply a failure criterion to each 

lamina in its own principal material directions (step-10 and 11). This process seems 

straightforward in principle, but the force-strain-curvature and moment-strain-curvature 

relations are difficult to completely understand.

Common Laminate Types 

The constitutive equations of the most general type of laminate are given by (55) with 

the coefficients computed according to (52). There are 18 different coefficients in the 

[A B d \ matrix and if  all coefficients are different from zero, the laminate response is fully 

coupled, meaning that the application of just one load (say, Nx) makes all six strains

different from zero. A  desire to eliminate some extent of the coupling terms has

motivated the use of particular types of laminates, which are described in this section.

Laminate Description

The notation used to describe laminates has its roots in the description used to specify

the lay-up sequence for hand lay-up using prepreg. When using prepreg, all layers have

the same thickness and only the angles need to be specified. In the hand lay-up process,

the laminate is built starting at the tool surface or bottom of the laminate, adding

subsequent layers on top. Therefore, the layers are numbered starting at the bottom and

the angles are given from bottom up.

I f  the laminate is symmetric, like [3 0 /0 /0 /3 0 ] and [0 / 90 /  0], an abbreviated

notation is used where only half o f the stacking sequence is given and a subscript (S) is
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added to specify symmetry. The last examples become [30/0]v and [o/9C)]s. A  

subscript (7) may be used to indicate that the sequence given is the total (e.g.,

[45 / -  45 / 45 / -  45] T) or [± 45 /±  45] T. A subscript may be used to indicate a repeating 

pattern. In such a way the last example becomes [(±45)2] T.

I f  the thicknesses of the layers are different, they are specified for each layer. For 

example \6tX / -  0t2 ], if  all layers have the same thickness, the laminate is called regular.

Balanced Laminates

In a balanced laminate, for every layer at +0  there is another at -  6 with the same 

thickness and material; and for each 0° -layer there is a complementary 90° -layer, also o f 

the same thickness and material. For each balanced pair o f layers k and k',

h = h' ’ ok = - e k (63)

By virtue of (34),

Even function: g /(0 t ) = Q,j ( -  6*) (ij = 11, 22, 12, 66)

Odd function : Q,6(Q) = -Q i6(-Q) (/ = 1, 2)

Then,

( /= 1, 2 )

The general load-deformation relations for this class of laminates are:

Bx 1 BX2 BX6

(64)

4 , = £ Q k  = 0k=l
(65)

~ 4 X Al2 0
Ny A2X A22 0
*rv 0 0 4 6

"M x B ~ BX2 a ;
My B21 B22 2̂6

A , B(,2 Bee

B2
b 6
A
d 2
A

2̂2 2̂6 
j®62__ 6̂6
A 2 

^22 ^26 
^62 D66

z »
Kx

Kxy

(66)
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Thus, a balanced laminate always has Al6 = A26 -  0 .

A balanced laminate can be symmetric, anti-symmetric, or asymmetric. For example, 

a laminate consisting of pairs of 6X, -  0X and O2, - 0 2 plies can be arranged in the 

following layups:

Symmetric \ [ ± 0 j /± 0 2]s

Anti - symmetric ! [0 ,/0 2/ - 0 2/ - 0 , ]  

Asymmetric i [0 ,/0 2/ - 0 1/ - 0 2]

A\6 = 2̂6 = ^

-̂ 16 ~ 2̂6 = 1̂6 = ^26 = ® 

•̂ 16 = 2̂6 = 0

M - o
[B ]# 0  (67)

[s ]*0

Symmetric Laminates

A laminate is symmetric if  layers of the same material, thickness, and orientation are 

symmetrically located with respect to the middle surface of the laminate. For example, 

[30/0/0/30] is symmetric.

Symmetric laminates experience no bending-extension coupling Bt] = 0 . This is very 

important during fabrication because curing and subsequent cooling o f the composite 

induces thermal forces Nx and . I f  the laminate is not symmetric, these forces w ill

induce warping ( k x, Ky ) of the final part. Since residual thermal forces due to curing are

unavoidable, only a symmetric laminate w ill remain flat after cool-down.

Consider the identical layers k and k' are symmetrically situated about the reference 

plane (figure 4). Then

>„=/,., I ,  Q ‘ = Q f  (1. y = l .  2 ,6 ) (68)

and according to the definition of equation (52), the bending-extension coupling 

coefficients are

3 , 0 (> ',7=1 ,2 ,6 ) (69)
I  jt=l
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With reference to Figure 4, note that for a symmetric laminate there is a negative zk 

for each positive zk (due to symmetry) corresponding to the same material properties and 

same thickness. Therefore, pairs of terms in the equation above corresponding to 

symmetrically located layers cancel each other, resulting in B:J = 0 . The general load-

deformation relations for symmetric laminates are

N,
N y

M r
M y
M ŷ

Aj i At 2 Al6
An A22 A26
1̂6 2̂6 -̂ 66
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

Z), j Dn D\ 
D.

16
Dn D22 
D\6 D26

26
D.66 .

r
K ,

K*y

(70)

and the load-deformation relations are reduced to

1̂1 1̂2 1̂6
0

M x Z), j Z), 2 Z)16 K*

\ N ’
► = 1̂2 2̂2 2̂6

O My > = Z), 2 d 22 d 26 Ky
_̂ 16 2̂6 6̂6 _ /°*y\1 M v J \̂6 D26 Dffi K*y.

(71)

The fact that [5 ] matrix is zero uncouples all bending terms from the extension terms 

in (55). This means that a symmetric laminate subjected to bending moments w ill not 

stretch or shear. Also, a symmetric laminate w ill not bend or twist i f  subject to in-plane 

forces. Symmetric laminates are used whenever it is possible because the analysis is 

simplified and they do not behave in extraneous ways. For example, unsymmetrical 

laminates bend and warp as a result of thermal expansion. In a symmetric laminate, the 

symmetric layers expand the same amount, and the laminate w ill expand but not warp. 

The first three equations of (55) can be solved independently of the last three. I f  the 

compliances (58) are desired, the 3x3 [a] matrix can be inverted to get the [a] matrix and
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the 3x3 [d ] matrix can be inverted to get the \d\ matrix without having to invert the 

whole 6 x6  [A B D\ matrix. Some special types o f symmetric laminates are discussed

below.

Symmetric Laminates Under In-Plane Loading

Symmetric laminates are most popular in applications mainly because they are free 

from warping induced by thermal residual stresses resulting from curing at elevated 

temperatures. Laminates provide excellent stiffness and strength properties for in-plane 

loading. They can be used with great structural efficiency in skins and stiffeners in 

aircraft structures.

In other words, we assume that the laminate deforms uniformly over the thickness if  

it is under in-plane loading. Although the strains are uniform and continuous over the 

thickness o f the laminate, the stresses in the laminate are, in general, discontinuous across 

the interfaces due to different material properties resulting from different fiber 

orientations. I f  the laminate is thin, then we can assume with good accuracy that the 

strain components sx, ey, and y  in all the laminae are the same over the thickness o f

the laminate. Under in-plane loading,

C?16 ~  Q l6  ~  0  4  6 ~  -^26 ~  0 (72)

X

{m } = 0 , {k} = 0  => < ey > =< s° > = constant (73)

The overall load-deformation relations for this class o f laminates are:
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4 , A l 0 0 0 0  '

O
O

N y ^12 A?. 0 0 0 0 A

\ N* 0 0 6̂6 0 0 0
<

O
A i.

M~x 0 0 0 la ,~ A 2 "A."
My 0 0 0 A 12 A 2 Afi a: v

Mxy 0 0 0 Dl6 A a
/ V

(74)

Therefore the load-deformation relations are reduced to:

\NX 
I N„

xy

^12 t e l m /
_^12 ^22 _ t e r  * My > =

A , A12 A,
A12 A „ A22

16

>26

a 16 a ,  a26 66

AT.

AT
(75)

Symmetric and Balanced Laminates

On a macroscopic scale, this type o f laminate can be treated as a homogeneous 

orthotropic material. For example, [4 5 /-4 5 /0 /-4 5 /45]= [± 4 5 /o}s, is symmetric and 

balanced laminates. By virtue o f (34),

Q 6 = 0  => 4 6 =0  (* = 1 ,2) (76)

Thus the defining characteristics o f symmetric and balanced laminates are

4 6 = A2t=0, Bf = 0 ( t , j  = 1 ,2 ,6 ) (77)

The general load-deformation relations for symmetric and balanced laminates are as 

follows:

'A ' 'A t A 2 0

Ax 2 A2 2 0

0 0 4 *
Mx 0 0 0

My 0 0 0

M *y. 0 0 0

0 
0 
0

A ,, x̂ l2 
Dn A „ A

0
0
0

0
0
0

A , A 16

22 26

a 16 a „  a26 66

s_s _

AT
Kxy

(78)

and the load-deformation relations are reduced to
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f^x
IN..

xy

^11 ^12 M Mx
_^12 ^22 _ My > ~
^66/xy -

Du Du Dl6
D\2 D22 D26
D\(y D26 Dfo *y

(79)

The in-plane strains can be obtain as:

A.I 1̂2
2̂2.12 Y\N„

i ~ V2l
an a\2

1 ^ 1 - Ex e 2
an a22_W " ^ 2 1

% e 2 .

\NX
\N„

(80)

r° = -  = a N  = — NI  xy A u 66ly xy ^  iv xy
A(, -̂'12

Symmetric Cross-Ply Laminates

A cross-ply laminate has only layers oriented at 0 and 90 degrees. I f  the construction 

is symmetric, it is called a symmetric cross-ply laminate. The main advantage o f a cross- 

ply laminate is simplicity o f construction, plywood being the typical example. Since all 

layers in the laminate have Qi6 and Q26 equal to zero, the 16 and 26 entries in [a ] and [d ] 

are also zero. Therefore, cross-ply laminates do not have coupling between shear and 

extension in the [a \ matrix, nor do they have coupling between twisting and bending in 

the [d ] matrix. This is not a really great advantage from an analysis or a performance 

point o f view, unless the laminate is also symmetric. For example, [0 /  90 /  90 /  0]= 

[0 /90]s and [0 /90/0]= [o/9o]s are symmetric cross-ply laminates with even and odd 

layers, respectively. By virtue o f specially orthotropic layers,

Q „=  0  => 4 « = 8 ,« = A 6 = 0  0  = 1, 2 ) (81)

Thus, the characteristics o f symmetric cross-ply laminates are defined as:

A 6 =A2S=0, Dl6=D 26=0, [b ]=  0 (82)
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X /
N y

K

A i  A i  ®
A i  A i  ®
0 0 At)6

0  0  0  ■ 
0  0  0  

0  0  0
u

0
Sx

0
s ,

X .
M r
M y

M *y.

0  0  0  

0  0  0  

0  0  0

Ai A2 ®
d 12 d 22 0

0  0  z v K y

K *y,

(83)

The load-deformation relations for symmetric cross-ply laminates are shown in equation 

(83). Thus the load-deformation relations are reduced to

X
I N„

Al, Au
A A

. 1 2  22 .

N.*y xy

X I 'A, 02
XJ _02 02 _
X  = 0>6Kxy

K„ (84)

For a specially symmetric cross-ply laminate that has alternating orientations o f 0° 

and 9Cf plies with odd layers, with 0(0° or 90°) as the orientation o f the middle layer, the 

magnitude o f the 1 2  and 6 6  entries in \a ] and [Z)]can be described as:

M - o1̂6 ~ 2̂6 ~ ® 

1̂2 = 012

6̂6 = 066

0 6  “  026 “  ®

Dn = o M ^ n i )  

f«=G«(eXA3/ 12)

(85)

Symmetric Angle-Plv Laminates

Angle-ply laminates are built with layers o f the same material and thickness, oriented 

at+ 6  and -  0  directions. They can be symmetric or asymmetric. An angle-ply laminate 

with an even number o f plies is also balanced, for example, [3 0 /-3 0 /-3 0 /3 0 ] is a 

symmetric angle-ply laminate and [30/—3 0 /30 /—30] is an anti-symmetric angle-ply 

laminate. Then, the in-plane shear coupling terms are

n _ « /2 __  n /2 ___

4. = r  Q» I = 2 Q,i («>+r  Q i (- f ) t =o (! = l, 2)
k=1 k=1 k=1

41
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since Ql6(9 )= -Q i6( -9 )  from equation (34). Thus, a symmetric angle-ply laminate w ith  

an even number o f layers has

4 #= 4 „ = 0 ,  [Z>]*0, [b ]= 0  (87)

The load-deformation relations for this class o f laminates are

4, An 0
N y An A2 2 0

0 0 4,6
m ; 0 0 0

M y 0 0 0

0 0 0

0
0
0

0
0
0

0
0
0

Ml M2 M6
M2 M 2 Me 
Me Me M>e

Is .
*x

K*y

(88)

Then the load-deformation relations are reduced to

N.
I N„

"4, An M Mx'
_An 2̂2 _ K J ’ <My > =

xy -

M. A 2

D \2 D 22 2̂6
D ie ^ 2 6 A*

fCv
*y

(89)

I f  a specially angle-ply laminate consists o f an odd number o f alternating + 9  and 

-  9 plies o f equal thickness, then it is also symmetric, for example, \01— 6191— 6 /  0 \ =

[± 0 /  0 ] s . For a ply thickness t , laminate thickness h = n t , and orientation o f middle

layer 9 , then the in-plane shear coupling terms are:

46 = Z Q * t=  s  f i£ (* > +  S  Q * (-9 )t + Qi6(e)t = Qi6( 0 ) -  (/ = 1,2) (90)
k=l k=1

Thus, a specially symmetric angle-ply laminate with an odd number o f layers has

[A]*0, [D\± 0, [# ]= 0  (91)

Even though the full coupling terms o f [a ] and [f)j matrices are not zero, but their 

magnitude can be shown as
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( g  -11, 22,12,66) 4  = e s(0>, j D, = Q ,(e )^

(1=1,2) A« = a.(5)^
«  I z

12
\/i3 T3n2 -2^) 

12 v «3 ,

(92)

Anti-Svmmetric Laminates

An anti-symmetric laminate is a special case o f a balanced laminate, has pairs o f 

layers o f opposite orientation but the same material and thickness symmetrically located

plies. For example, [30/—30 /30 /—30] and [0 /90 / 0 /90] are anti-symmetric laminates. 

For the symmetrically situated balanced pair o f k and k' (or 6  and—6  layers),

the in-plane shear coupling stiffnesses and bending/twisting coupling stiffnesses are

Thus, anti-symmetric laminates have = A,6 = D]6 = D26 =  0 , but they are not 

particularly useful nor are they easier to analyze than general laminates because the 

bending extension coefficients fJ,6 and B26 are not always zero for these laminates.

The purpose o f the remainder o f this section is to discuss two important classes o f 

anti-symmetric laminates, the anti-symmetric cross-ply laminate and the anti-symmetric 

angle-ply laminate. Neither laminate is used much in practice, but both add to our 

understanding o f laminates.

with respect to the middle surface o f the laminate. A  laminate has an even number o f

(93)

(94)
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Anti-Symmetric Cross-Ply Laminates

Anti-symmetric cross-ply laminates consist o f pairs o f 0°and 90° plies symmetrically 

situated about the middle surface with identical thickness and material properties. A  

laminate has an even number of plies. For example, [0/902/0 2 /9 0 ]r is an anti

symmetric cross-ply laminate.

By virtue o f specially orthotropic layers,

Qie = 0 —̂ 46 = Bi6 = Di6 = 0 (i = 1, 2) (95)

Thus, an anti-symmetric cross-ply laminate with an even number o f layers has

1̂6 = 2̂6 = ® 
4l *  4 2 
4 2> -̂ 66  ̂® !

A  6 = ^26 = 0
D\, « D22

A 2» As6 ^ ® !

B16 = 2̂6 = ® 
Bll =  —B22
4  2 ~ B66 = 0

The overall load-deformation relations for this class o f laminates are

~4, An 0 \B U 0 0
N y An 4 . o ! oI - B , t 0
N xy 0 0 4 *  L 0 0 0
w x 4 , 0 o i A . Dj 2 0
My 0 -B n o \D U A . 0

M „ 0 0 o ! o 0 A *

r *y
K ,

xy

(96)

(97)

The load-deformation relations are then reduced to

X ' Atl An i Bn 0 K
N, 42 4 i  ■ ® — 4 i
m ; Bu 0 | A . A 2 K,
My 0 — Bu J Z)12 _

.V

xy
\M xy j

4,6 0 
0 D(66.

1 xy
Kxy J

(98)

A regular anti-symmetric cross-ply laminate is defined to have all laminae o f equal

thickness and is commonly due to its simplicity o f fabrication. As the number o f layers

in the laminate increases for a fixed laminate thickness, the bending-extension coupling
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stiffness , can be shown to approach zero.

Using (58), it can be shown that the laminate bends when loaded with only an inplane 

force Nx. That is, a curvature k x = bnNx is induced in addition to stretching e°x = anN x . 

The anti-symmetric cross-ply laminate is subject to in-plane forces N x andiV^ caused by 

thermal contraction during cool-down after curing. It can be shown that bu and b21 (as 

well asZ?n andB22) have opposite signs, resulting in the saddle shape deformation.

For specially anti-symmetric cross-ply laminates with an even number o f alternating 

0°and 90° plies, the magnitude o f the 12 and 66 entries in [^]and[Z)]can be shown as

thickness and elastic properties.

An anti-symmetric angle-ply laminate has A16 = =  Dl6 = D26 =  0 , but B]6 *  0 and

B26*  0 . It can be shown that for this laminate, the only zero terms are

4 2 =02* | 0 2 =0 !(*3/ 12)
4 *  = 0 » *  i 4 *  = 0 , ( * 3/ i2 )

A]6 — A26 — 0  j D16 — D26 — 0  

Ai , w  A22 i Du «  D22
1̂6 ~ 2̂6 ~ ® 

Bn = —B22

Bu = 0
(99)

Anti-Svmmetric Angle-Plv Laminates

Anti-symmetric angle-ply laminates consist o f pairs o f +  6t and — 6t plies

(o° < 6i < 90°), symmetrically situated about the middle surface and having the same

(100)

The load-deformation relations for an anti-symmetric angle-ply laminate are
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N x " 4 , AX1 0 0 0 *16
N y A\2 A22 0 0 0 *260 0 4 * *16 __4<> _

0
M 'x 0 0 * 7 "A ." D\2 0 "

M y 0 0 *26 D\2 D22 0

M *y *16 *26 0 0 0 ^66.

-i
O

Sx
0

0
r J

Ky

K*y.

(101)

The load-deformation relations are then reduced to

Nx A 1 A i *16 ' Mx A , A 2 *16

\ N”
> — A 2 A22 *26 e; > < t My ► = Du D22 *26 Ky (102)

A e *26 *>«.. . V Nxy A e *26 4,6.
O

The in-plane strains and curvatures can be obtain as

0
s, " 4 i AX2 *16 _

-1
O

■ s >= An 42 *26 ■

. V A e *26 A *.

K, A i Dn *16 "
-1

< Ky ► = Dx 2 D22 *26
0

y * . .*16 *26 4 6 .

a \ \  a \2

a \2  a 22

16 26

*11
12

12

16
26
66

61

Nx
Ny
M xy

d22 b62
6̂1 6̂2 a ,66

”1
m ;
M y  ►

J A 7

(103)

(104)

Therefore, an inplane load Nx causes the laminate twist (fcxy = bl6Nx). A regular anti

symmetric angle-ply laminate has laminae o f all the same material and thickness for ease 

of fabrication. The bending-extension coupling stiffnesses Bl6 and B26 can be shown to

approach zero as the number o f layers in the laminate increases for a fixed laminate 

thickness.

A more special case o f this class o f laminates is the anti-symmetric regular angle-ply 

laminate, consisting o f an even number o f plies alternating between 0 and - 6  in 

orientation, that is, [0 / -  0  /  0  / -  0  /  0  / -  . However, the same coupling terms are not

zero, but their magnitude can be shown as
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y =16, 26 

zy = 11, 22,12,66

4 = o

A j=Q jh

4 = 0

4 = 4 ( a3/ i 2)

B0 = - Q iy(h2/ 2 n )
(105)

4  = o

Specially Orthotropic Laminates

Each fiber-reinforced composite layer is orthotropic in material axes, resulting in 

Qi6=Q26= 0- I f  the layer is oriented at 0 or 90 degrees, it is called specially orthotropic

because the [f?] matrix has the same zero entries as the \q \ matrix; that is, Q]6 = Q26 =  0 .

A layer reinforced with woven or stitched bidirectional fabric is also specially orthotropic

if  the amount o f fabric in both directions (±  9 )  is the same.

A specially orthotropic laminate is constructed with specially orthotropic layers. It  

can be symmetric or not. For example, Ll s is a symmetric cross-ply laminate and

[0 / 90] is an anti-symmetric cross-ply laminate. Thus, specially orthotropic laminates are

not limited to cross-ply types (only 0° and 90° layers), as they may include balanced ± 6  

fabrics as well. The advantage o f a specially orthotropic laminate is that it has the same 

zero terms for laminate stiffnesses and compliances as

-^16 =  “̂ 26 =  0  I A  6 =  4 6  =  0  I ^ 16  =  ^ 2 6  =  ®  .
[ |  (11!6)

a i6 =  a 26 =  H ! ^16 =  =  H  ! ^16 =  ^26 =  ®

Orthotropic Laminates

A laminate is orthotropic when every ply is orthotropic and the orthotropic directions 

coincide with the x and y directions. Fiber-reinforced plies are orthotropic under the 

following conditions:

1. For unidirectional fibers, all fibers are aligned with one o f the laminate’s 

orthotropic directions
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2. For woven fabric, ply’s symmetry axes are aligned with the laminate’s orthotropic 

directions

3. For adjacent unidirectional plies, the symmetry axes o f this combined layer are 

aligned with the laminate’s orthotropic directions.

On a macroscopic scale, a balanced and symmetric laminate about the principal 

laminate axes 1 and 2 can be treated as a homogeneous orthotropic material. This type 

of laminate is called an orthotropic laminate. By definition, the inplane/flexure coupling 

stiffnesses and the inplane shear coupling stiffnesses are zero, that is,

4 4 = 4 6= o, £>I6 = A « = o, [b ] = o (107)

The overall load-deformation relations for the orthotropic laminates are

t f . l \ \ An 0 0 0 0 "

r 0
*1

N 2 Au A l 0 0 0 0 e2
U 2 0 0 -̂ 66 0 0 0 0

. ?12. „
M x 0 0 0 A . £), 2 0 * i
m 2 0 0 0 A 2 A 22 0

k 2
M n 0 0 0 0 0 A * . *12 .

(108)

Thus, the force-deformation relations referred to the 1 -  2 system o f coordinates are

N,12

' "4 i A i 0 1
> = Ax 2 A22 0 «

>
0 0 A e\ T n

(109)

These relations, when referred to any arbitrary system, take the form

Nx '4 , A  2 a :
O

► = An A22 A i < O

N*. A e A i A>6_ O
7 *y j

(110)

48



www.manaraa.com

10-Percent Rule o f Orthotropic Laminates

Plates are often made according to the 10-percent rule, and such plates behave 

similarly to orthotropic plates. Therefore, solutions for orthotropic plates provide good 

approximations o f the deflections, maximum bending moments, buckling loads, and 

natural frequencies o f non-orthotropic plates that have symmetrical lay-up and are 

constructed according to the 10-percent rule.

The 10-percent rule requires that the plate satisfy the following conditions:

1. The plate is made o f unidirectional plies.

2. There are at least three ply orientations, {n > 3).

3. The angles between the fibers are at least 15°, (a # > 1 5 °).

4. The number o f plies in each fiber direction is at least 10 percent o f the total

number of plies (n^, > 0.1 ntolal).

5. Symmetric layup.

For example, [456/903/0 10] s => ^ > 1 .9 ,  y^ > l-9 , >1.9

Plates conforming to the 10-percent rule have better load bearing capabilities than 

unidirectional or angle-ply laminates. The deflections, maximum bending moments, 

buckling loads, and natural frequencies o f unsymmetrical plates can be approximated by

replacing [Z>] by [d ] * in the expressions derived for symmetrical plates as shown below:

[i> ]'=  ( i n )
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Ouasi-Isotropic Laminates

Quasi-isotropic laminates are constructed in an attempt to create a composite laminate 

that behaves like an isotropic plate. One such laminate has equal percentages of

0°, 45°, —45° and 90° layers placed symmetrically with respect to the laminate mid

plane, for example [± 45 /90 / 0] s. The in-plane behavior o f quasi-isotropic laminates is

similar to that o f isotropic plates, but the bending behavior o f quasi-isotropic laminates is 

quite different from the bending behavior o f isotropic plates. Quasi-isotropic laminates 

were a convenient replacement for isotropic materials in weight critical applications. In  

a quasi-isotropic laminate, each layer has an orientation given by

0k =k0o, 0O= -  (112)
n

where k indicates the layer number, n is the number o f layers (at least 3), and 0O is an 

initial angle. When writing the stacking sequence, any angle larger than 90 degrees is 

replaced by its complement (for 0k > 90 => 0k = 0k -1 8 0 ). For example, [60/120/180]

is written as [6 0 /- 60 /0 ]. The layers can be ordered in any order, like [60 /  0 / -  60], and 

the laminae is still quasi-isotropic. Most quasi-isotropic laminates are balanced.

Quasi-isotropic laminates are generally not symmetric, but they can be made 

symmetric by doubling the number o f layers in a mirror (symmetric) fashion. For 

example, the [6 0 /- 60/0] can be made into a [60 / -  60 /  0 /  0 / -  60 /  60], which is still 

quasi-isotropic. The advantage o f symmetric quasi-isotropic laminates is that [i?] = 0 .

In quasi-isotropic laminates, the in-plane stiffness matrix [a ] behaves like that o f an 

isotropic material. The reason for such a laminate being called quasi-isotropic and not
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isotropic is that the other stiffness matrixes [if] and [/)] may not behave like an isotropic 

material. The in-plane stiffness matrix [a ] and the bending stiffness matrix [A] o f 

isotropic plates can be written in terms o f the thickness ( h ) o f the plate with only two 

material properties, E and v ,  as:

M = M Q]=
Eh 1 v 0

v 1 0
0 0 (l -  v)/2

1 v 0
v 1 0
0 0 (l -  v)/2

(113)

(114)

Note that for isotropic plates, Ax, = A22 = Eh /( I -  v 2) and Al6 = A26= 0 . Also,

A i = A 2 = /12(1 -  v2) and D]6 = D26 = 0 . On the other hand, a quasi-isotropic

laminate has

[a ] = An An 0 (115)
“4 . A 2 0 ‘

Ai2 Ai 0
0 0 As.

Ai Dj2 a 6‘
A2 D22 A6
.A* A6 A*.

(116)

Like isotropic plates, quasi-isotropic laminates have An = A22, but the later have 

A i *  A 2, Dl6 *  0, and D26 ^ 0 , which makes quasi-isotropic laminates quite different 

from isotropic plates, as shown below.

Isotropic: j Al6 = A26 = 0 j Dl6 = D 26= 0  | [b ] = 01̂6 “  2̂6 — 0 
A\\ = 2̂2
Au = v A n 
2^66 ~ Au — A:22

D\e — D26 = 0
A i= d 22
A2 = v Dn
2̂ 66 = Al ~D22

(117)
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Quasi - isotropic: ! Al6 = A26 = 0
A l ~ 2̂2 
An = v A u

Dl6 * 0, d 26 *  0 
A i ^ A 22 (118)

! 2-̂ 66 = An — A22

Therefore, formulas for bending, buckling, and vibrations o f isotropic plates can be used 

for quasi-isotropic laminates only as an approximation. However, a laminate can be 

designed trying to approach the characteristics o f isotropic plates, with Dx, « D22 and 

Z)16 and D26 as small as possible. This can be accomplished by using a symmetric quasi

isotropic laminate with balanced 0 /90  and ±  6  layers and a large number o f layers. In  

that case, the formulas for isotropic plates provide a reasonable approximation.

The conclusions discussed before regarding the defining characteristics for the 

various types of laminates are summarized in Tables 3 and 4.

TABLE 3. The Defining Characteristics for Various Types o f Orthotropic and Isotropic 
Laminates

Orthotropic

Isotropic

Quasi-Isotropic

> Os

11 > ON

II O

o
n II b h
j

ON

II O W = o
Specially Orthotropic

1̂6 ~ 2̂6 “  0 A6 ~ A 26 “  0 — 2̂6 ~ ®
a\6 ~ a26 = 0 1̂6 = 2̂6 = ® 1̂6 ~ ̂ 26 = ®

1̂6 = ̂ 26 = ® D\6 — D 26 = 0 W =0
4l = ̂ 22 Ai ~ A22

An — vAu A 2 = vAi
2^66 =  4 l ~ ^ 2 2 Âs6 = Ai “ A 2

> O
n II > O
n II O Dl6 ^ 0, D26 ^ 0

4l = 2̂2 Ai ^ A 2

1̂2 “  VAl
2^6 = \ \  ~ A12
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TABLE 4 . The Defining Characteristics for Various Types of Symmetric and 
Antisymmetric Laminates

Symmetric and Balanced
-̂ 16 — -̂ 26 — 0 W -o

Symmetric Cross-]Ply
1̂6 — 2̂6 — 0 Dx 6 — D26 — 0 W = o

Specially Symmetric Cross-Ply
1̂6 — -̂ 26 — ® 

vf12 =

4 *= e « {e )'>

A6 — D26 — 0

A ,= 0 ! (5X ''3 /I2 )

W -o

Symmetric Angle- ily (n even)
■̂16 ~ -̂ 26 — ® M -o

Specially Symmetric Angle-Ply (n odd)
i , j  = 1, 2, 6 

ij = 11,22,12,66

/ = 1, 2

4*0
4  = 0 ,(9 )*  

4  = 0 6 (5 )
n̂

4 * 0

4 = 0 ,(0X *’ / 12) n 

4 . - 0 .(9 ) ^ ^
J50 II o

Antisymmetric Cross-Ply (n even)oIIsoiiSO ^16 “  ^26 ~  ® A 6 ~  B 26 — 0
Al ~  ^2 2 Al ~ A 2 A i= —A 2

^ 1 2 ’ ^6 6  ^  ® A2* A * * 0 A2 = A>6 ~ ®
Specially Antisymmetric Cross-Ply (n even)

A \ 6  = ^ 2 6  =  ® A 6  “ D 2 6  —  0 ^3 Os

II

Ov

II 0

A l  ~  A 2 A i  *  A 2 Jpo II 1
K

)

A 2 = S l 2 ^
4 ; = e 12fe3/ i 2) Bu — 0

A 6 = Q e e h a * = & # ’ / 12) ^ 6 6 = 0

Antisymmetric Angle-Ply
■^16 ~  Ĵ 26 ~ ® 
a i6 =  a 26 = ®

D \6  — D 26 — 0 
1̂6 = d 26 = 0

Al “ A 2 ~ A2 “ As6 ~ ® 
1̂1 “ A2 = 1̂2 ~ ̂ 66 “ ̂

Specially Antisymmetric Angle-P y (n even)
zy = 16, 26 
ij = 11,22,12,66

4 = 0
A j = Q y h

4 = 0

4 = 0 « ( * 1 /12 ) II 
II 

O 
|

P
I

K)
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CHAPTER 3 

METHODOLOGY

The methodology used in this research consists of three key elements: a function 

evaluator to calculate the dynamic responses of delaminated composite laminates based 

on analysis, a function approximation to simulate the dynamic responses from the 

analysis, and a function optimizer to search for the delamination pattern associated with 

measured dynamic responses that were simulated by function approximation.

The delamination detection problem comprises three computing modules, namely, 

finite element analysis, counterpropagation neural network, and genetic algorithm. The 

finite element models generate the dynamic responses (nature frequencies) of various 

delamination sizes and locations of composite plates. The counterpropagation neural 

network models are trained by the input-output data collected from the finite element 

analysis, a function evaluator. The detection process is then formulated as an interactive 

optimization between two modules, namely, the trained counterpropagation neural 

network, which is a function approximation, and the genetic algorithm, which is 

essentially a function optimizer. Figure 4 shows a flowchart of the current methodology 

which combines the three modules together.

The formulation of this delamination detection as an optimization problem is given 

below:

For a set of given measured natural frequencies tomi, i = 1,..., nm
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find the delamination pattern corresponding to parametersxp x2,..., xn

to minimize an objective function f

where the delamination parameters xp i = 1,..., n are design variables, which define the 

delamination patterns (referred to as PIN in the MATLAB codes). The parameters 

include the sequence of thickness location ( Zd), in-plane locations {xd, y d ), and the sizes

The objective function is defined to minimize the output error between the measured 

frequencies from FEA and predicted frequencies from CPNN for each delamination 

pattern (individual in the population). It is essentially a convergence or a termination 

criterion in the form of the optimal valuation. Although finite element analysis is the 

most time-consuming part of the entire delamination detection method, the value of the 

objective function is the key for GA to reproduce the offspring and plays an important 

role in the entire optimization procedure. Thus, defining an appropriate objective 

function is essential to the success of the delamination detection problem. There are two 

formulations that can be used as the objective function. They are the weighted sum of 

squares of the relative errors and the maximum of relative errors (in absolute values), 

which can be defined respectively as follows:

of the delamination (ax, ay ), in such an order as \z d , xd, y d, ax, ay\ .

Objective Function

/  = max (1 2 0 )

(119)
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where u>mj and &pj are the measured and predicted / h natural frequency of the delaminated

laminate, Wj is the weight associated with yth frequency, and nm is the number of 

measured frequencies. The value of the objective function f  depends on the specified 

delamination pattern and is a function of the design variables identifying the delamination 

pattern. Numerical experiments in previous research studies by Hieu The Le and Jin- 

Hwan Kim show that the definition of the objective function given in equation (120) 

leads to more accurate delamination detection results [7,8].

Measured
Frequencies

Predicted
delamination

pattern

Training and 
Validation Data Sets

(Function Optimization)

Genetic Algorithm

(Function Approxomation)

Counter-propagation 
Neural Network

Refined Layerwise Composite Laminate 
Theory Based Finite Element Analysis

(Function Evaluation)

FIGURE 4. Flow chart of combined methodology of FEA, CPNN, and GA.

56



www.manaraa.com

CHAPTER 4 

FINITE ELEMENT ANALYSIS 

Dynamics of Damaged Structures 

This section is devoted to the construction of the dynamics of damaged structures, 

which provides a basis for damage identification [7]. Modal properties, i.e. natural 

frequencies and mode shapes, are used for delamination detection. Modal properties are 

related to the physical properties of the structure. The equations governing the dynamics 

of a multi-degree freedom system can be written in the time domain through the 

following assumed expression:

[M |r ( /)} + [K p r(< )}=*■(/) (121)

where [A/]and [AT] are the mass and stiffness matrices of the system, X{t) and X(r)are 

the physical displacement and acceleration vectors, respectively, while F (t) is the 

applied load vector. If  equation (121) is transformed into the modal domain to form an 

eigenvalue equation for the y'th mode, then:

(122)

where 2, is eigenvalue and {<̂  | is corresponding normalized eigenvector.

When damage occurs in a structure, the stiffness matrix, natural frequencies, and 

mode shapes of the damaged structure can be expressed asjXJ, Xjd, and{<|>^}, 

respectively. In addition, the natural frequencies and mode shapes of the damaged
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structure continue to satisfy the eigenvalue equation. The y'th mode of such damaged 

structure therefore satisfies the equation:

(123)

From equation (123), it may be deduced that the changes in the mass and stiffness 

matrices cause changes in the modal properties of the structure. Since the mass matrix 

\m \ is unaltered even in damaged condition, therefore, the modal properties can be 

identified through the identification of the correct stiffness matrix. In general, 

delamination decreases the natural frequency and causes changes to the mode shape of 

the composite laminate. This is due to the reduction of the stiffness caused by the 

delamination. Thus, the measurement of natural frequencies of a structure at two or more 

stages of its life offers the possibility of detecting the presence and location of 

delaminations.

Improved Laverwise Composite Laminate Theory

For the deformation of laminated structures, the layerwise distribution of mechanical

properties in the thickness direction leads to the fact that displacement and transverse

stress fields are continuous, but their derivatives with respect to the thickness coordinate

at layer interfaces are discontinuous. Modeling of this phenomenon, that is, a zigzag-like

form of displacements and an interlaminar continuity of transverse stresses, remains a

challenging problem. Failure to capture these characterizations w ill result in

unreasonable predictions of stress and strain fields in the analysis of multilayered

composite structures.

Modeling and detection of delamination in composite structures has primarily been

based on Classical Laminate Theory (CLT) and First-Order Shear Deformation Theory
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(FSDT). However, the CLT analysis, which is based on the Love-Kirchhoff assumptions, 

is inadequate for structures with a high ratio of in-plane Young’s modulus to transverse- 

shear modulus. Therefore, CLT is not capable of predicting the overall response for thick 

structures where the effect of transverse-shear deformation is significant. This means 

that transverse shears are completely ignored (CLT) or are modeled using shear 

correction factor (FSDT). Shear deformation plays an important role in the response 

analysis o f composite structures due to the material discontinuities at each interface o f the 

laminae. To address this issue with ply level accuracy, the in-plane displacement field is 

modeled using the superposition of overall first-order shear deformation and layerwise 

functions [1,10]. The first-order shear deformation based displacement field was used to 

address the overall response of the entire laminate and the layerwise functions were used 

to accommodate the complexity of zigzag-like in-plane deformation through the laminate 

thickness. The layerwise theory was modified to include the discontinuities in the in

plane and through-the-thickness of displacements induced by delamination. The 

displacement fields are supplemented with Heaviside unit step functions that allow 

discontinuities in the displacements.

Consider an N-layered laminated composite plate with multiple delaminations. The 

displacements of a point with the coordinates (x ,y ,z)  are described using the 

superposition of first-order shear deformation and layerwise functions, as follows

(124)
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where U* denotes in-plane displacement and U\  denotes transverse deflection. The 

superscript k denotes the Ath layer of the laminate and the subscript / denotes the 

coordinate x or>>. The unknowns are uf,w, u ’and w J. Note thatw, and w

denote the displacement of the reference plane, are rotations of the normal to the 

reference plane about the x and y  axes. 0* and vj/f are layerwise structural unknowns 

defined at each laminae. The terms u j  and w J represent possible jumps in the 

displacement field due to delamination, allowing slipping and separation between 

sublaminates, and zy denotes the delaminated interface. It must be noted that at the

perfectly bonded interfaces, transverse shear stresses are continuous. At the delaminated 

interface, transverse shear stresses are zero. The function h ( z -  z j ) is Heaviside unit step

function. A ll interfaces between layers are initially assumed to be delaminated and 

perfectly bonded interfaces can be easily simulated by setting u/  and w J to be zero in

equation (124). Therefore, the number of delaminated layer interfaces is initially equal to 

the total number of plies in the laminate. The through-laminated-thickness functions, 

g(z)  and h(z) are used to address the characteristics of in-plane zigzag deformation and 

have the following form:

g(z)=smh(z/h)
. . . . (125)

h{z)=cosh(z/h)

The above displacement fields lead to a total of 5 + 4N + 3(N - 1) structural unknowns, 

where N  is number of layers. The total number of structural unknowns is dependent on 

the number of layers and delaminations, implying that computational effort w ill increase

60



www.manaraa.com

greatly if  multilayered laminates are used. To further reduce the number of variables, the 

conditions of zero surface traction at top and bottom surfaces, and continuity of 

transverse shear stresses and in-plane displacements at interlaminar surfaces are imposed.

In this section, finite element methods are used to develop the mathematical models 

of structures. Natural frequencies have been computed for cross-ply laminates with 

delaminations placed at different locations. Numerical results indicate excellent 

correlation with analytical solutions and experimental results.
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CHAPTER 5

COUNTERPROPAGATION NEURAL NETWORKS 

Artificial Neural Networks 

Introduction to Neural Networks

Neural networks are characterized by many of the inherent properties of the human 

thinking process. While the human way of thinking is less robust than the correct 

execution of a computer program, it has some very attractive features such as intelligence, 

creativity, intuition, adaptability, and spontaneous association. Mathematical models and 

algorithms, designed to mimic the information processing and knowledge acquisition o f 

the human brain, are called neural networks. Such a neural network is a non-linear 

system consisting of a large number of highly interconnected processing units, nodes or 

artificial neurons (or simply neurons), which perform identical tasks. The basic elements 

of a neural network are the various nodes, the connectivity pattern of these nodes through 

directional links, the response mechanism of the node to its input signals, and the learning 

rule for training such a network [11].

A node collects a series of input signals and transforms them into an output signal via 

a transfer function, as shown in Figure 5. When the weight value at each link and the 

connection pattern are determined, the neural network is trained. This process is 

accomplished by learning from the training set and by applying certain learning rules.

The trained network can be used to generalize for any of those inputs that are not 

included in the training set.
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Nodes

Neurobiological methods of computation are distinctly different from traditional 

computation. The basic unit or computational processor in neural networks is a node. 

The node receives a sum of weighted inputs from various input sources, and processes 

this weighted sum through an activation function, as shown in Figure 5.

Weight vector

Input vector ixi
u

if

Output
Y

on

FIGURE 5. Structure of a node.

The input vector X , which is used to simulate the stimuli, is multiplied to its individual 

input JC, by the associate weight value u, along its edge to the node. The products are

summed at the node. The node fires only if  the sum builds to the threshold or bias 6, 

which is estimated as a trainable weight for an additional input signal attached to each 

node having a constant input value of x = 1. In this way, a node carries out the
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I "
computation and the output is 7 = /  ^  uixi -  G

j = i

, where /  is the activation function.

Architectures of Neural Networks

The computational capacity of one node may have some limitations. However, when 

many nodes are put together to form neural networks, a complex computational task can 

be performed. The arrangement of nodes and the pattern of connections between them 

are called the architecture of NN (type, structure, or topology of NN). The three main 

types of architecture are feedforward, recurrent, and cellular NN. In the feedforward NN, 

signals are transmitted in one direction, only from inputs to outputs.

Learning of Neural Networks

In the course of training, such a network of neurons Teams’ by changing the weights 

of its neurons. Two different learning methods can be distinguished: supervised and 

unsupervised learning. When learning is unsupervised, the neural network is provided 

with the input patterns. The network itself decides what output is best for a given input 

and reorganizes accordingly. After some iteration, it should settle to a stable state. A ll 

unsupervised learning systems have a general optimization criterion, such as the 

minimization of energy or distance, maximization of profit, and so on, which is used for 

the evaluation of the result at the end of each cycle. The goal of the supervised learning 

method is to find a model that correctly associates the inputs (representation of the 

objects) with the targets (representation of the responses). In supervised learning, the 

outputs of the neural network are compared with the desired outputs or target outputs, 

and the error is calculated. The weights are adjusted so as to minimize this error. Thus, 

the targets serve not only as a criterion for how well the system has been trained, but they
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also influence the correction o f each weight.

Generalization

After “learning,” the network should extract “regularities” or “rules” from the training 

data and be able to generalize data, i.e., to produce the output correctly for the input 

patterns that are never used in creating and training the neural network. Neural networks 

can be applied to four basic types o f applications: association, classification (clustering), 

transformation (different representation), and modeling.

Neural Network Modeling Techniques

Neural networks are capable of modeling input-output functional relations, even 

when mathematically explicit formulas are unavailable. To create such models, it 

suffices to present a network o f interconnected artificial neurons with a set o f known 

input-output pairs, and adjust the strength o f connections among neurons during the 

training process. These interconnection strengths, also referred to as the interconnection 

weights in the network, are computed according to some learning rules; once trained, the 

network can be used as a model o f a given relation. Thus, well-trained neural networks 

represent a knowledge base where knowledge is distributed in the form o f weighted 

interconnections in which a learning algorithm is used to modify the knowledge base 

from a set of given input-output pairs.

Kohonen Neural Networks 

Introduction to Kohonen Neural Networks

In this section, a general overview o f how to use a Kohonen neural network (K -N N ) 

is given [12,13]. Learning in a Kohonen network is unsupervised, that is, the property to 

be investigated is not used in the training process. Thus, in principle, Kohonen networks
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can be used for similarity perception or for the clustering of objects. A  counter

propagation network, which w ill be discussed in the next section, is a combination o f 

supervised and unsupervised mapping o f neural networks. K-NN and CPNN are quite 

flexible for adaptation to different types o f problems and can be custom-designed to 

almost any type o f data representation. In comparison to other neural network methods, 

the K-NN and CPNN are transparent and the results are easily interpretable. An 

advantage o f K-NN and CPNN is that we can follow the predictions. When an object is 

situated into the trained network, its neighbors determine the prediction.

Supervised and Unsupervised Learning

A rtificial neural networks (or simply neural networks) have several advantages over 

statistical techniques. They allow building models without knowing the actual modeling 

functions. From K-NN and CPNN, useful information about input and output variables 

can be extracted, respectively.

Lets consider the neural network (N N ) with n inputs and m outputs. After the 

training, the network w ill be called a trained NN, which should be able to achieve one o f 

the following tasks:

1. to generate, with no prior knowledge about the intrinsic property o f input objects, 

a 2-dimensional topological distribution (a 2D map) o f most active output signals 

(neurons) as the answer to all r input objects X s = (xsVxs2,...,xsn) , s = 1

2. to yield, for any given signal X s = (x sVxs2,...,xsn) ,  the output signal 

Ys = ( y s\>ys2>->ysm) as Similar to the predefined target vector Ts = ( tsVts2,...,tsm)  as 

possible.
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The first goal (2D map) calls for ‘unsupervised’ learning which requires only the 

input vector X s and no target Ts to be known in advance. In such learning, the

associated target vector Ts is required merely for checking the results after the learning is 

finished and not for the learning itself. In the unsupervised learning, the results, i.e., the 

target values Ts , are implied by the position o f the vector X s in a 2D map o f neurons.

Therefore, the obtained NN serves as a pointing device to the results.

In order to achieve the second goal, the so called “supervised” learning should be 

applied. For such learning, a set o f input-output pairs {XS,TS} with X s(xsVxs2,...,xsn)

being n -variable input objects and Ts(tsVts2,...,tsm)  the m -response output, or set o f m 

targets associated with each X s , is mandatory. During the supervised learning, the 

output vector Ys is calculated for each individual input X s and is compared to the target 

Ts. After comparison, a corrective measure is taken according to the particular NN  

strategy to change the weights in such a way that the corrections w ill assure better 

agreement between the YsmdTs in the final model. Thus, the goal o f supervised

learning methods is to find a model that correctly associates the inputs with the targets. 

The results o f any supervised learning are the values o f output vector coordinates as close 

to target values as possible. Supervised learning can be compared to fitting.

In any case, in order to generate (to ‘train’ or to ‘teach’) the final N N  means to input 

all objects X s (and all targets Ts if  required) to the network a number o f times. The

input o f all objects to the NN is repeated until either the agreements between all Ts and

the produced outputs Ys are acceptable or until the number o f pre-specified number o f
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epochs is exceeded.

Data Clustering and Classification

Clustering o f data is a method by which large sets o f data are grouped into clusters o f 

smaller sets o f similar data. The classification is conceptually different. It is an ordering 

of objects into exactly predefined classes. Thus, clustering is an unsupervised method 

designed to find relations between objects on the basis o f their input representations, 

while classification is a supervised method designed to establish relations between the 

objects and the corresponding targets. Usually, clustering is the first pre-processing step 

in many data handling procedures. I f  a set o f objects is separable by any clustering 

method on easily identifiable clusters, then classification o f unknown objects can be 

achieved on the basis of already established clusters.

Division in Training and Validation Set

For testing of models, the data set should be divided into two subsets. The training 

set is used to build the model and the validation set to test it. To obtain reasonable 

predictions for the validation set, the training set must contain information o f an entire 

descriptor space, and the final validation o f models should be done with an external 

validation set.

Uncertain Decision Areas

To optimize the classification function, a training pattern distribution should be 

created with a well-defined decision class that exists [14]. To achieve this goal, the 

uncertain decision regions should be omitted. Uncertainty regions may originate from  

two different situations: low sampling regions, i.e., regions where the training pattern 

probability density is low and is scarcely represented in the training set, and regions
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where the probabilities of the different classes are very similar.

x4
xS
x6
x7
x8
x9
xlO

64 neurons form ing a 
8x8x10 Kohonen-NN

Inputs X  
x 1

Poutfoi i  o f  I he neuron 
excited In input X

10 levels o f weights

64 outputs arranged in a 8x8 top-map 

FIGURE 6. Kohonen neural network architecture.

Note: Kohonen neural network architecture represented as the 8x8 block o f neurons. 
Each neuron is represented as a column o f 10 weights. The level o f weight which 
handles the seventh input variable x1 is shown in green. The seventh weight in the 
neuron at the position (1, 1) is also shaded.

Architecture and Learning Strategy o f Kohonen Neural Networks

SOM or Kohonen neural network is one o f the basic types o f artificial neural 

networks. SOM is a ‘self-organizing maps’ system which is capable o f solving 

unsupervised rather than supervised problems. It consists o f only one layer o f neurons in 

which each neuron contains as many weights as there are elements in the input vector X s;
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that is, it contains n variables. Therefore, the number o f weights in each neuron 

coincides with the number o f input variables. Neurons are, in the Kohonen NN, ordered 

in a two-dimensional array (see Figure 6). Dimensions are specified as Nnet x Nnet.

The learning o f SOM is the projection from multi-dimensional space onto a two- 

dimensional array o f neurons. The projection or learning o f the network runs in two steps. 

The first step is the selection o f the winning neuron and the second step is the self

organization o f the map. In details, it runs as follows: the multi-dimensional vector X s,

which represents an object or an input pattern, is passed to all neurons as input. Because 

of the competitive nature o f Kohonen layer, the larger value input vectors overpower the 

smaller vectors. For the network to operate properly, the input vector must be normalized. 

At each neuron, the comparison between vector X s and the neuron’s weights are made.

As a rule, in the Kohonen NN, after input o f training pattern, only one neuron is 

stimulated. Therefore, the neurons are competing among themselves to be stimulated and 

learning is usually referred to as competitive learning. The one selected from among 

Nnet x Nne{ neurons is called the winning neuron. The actual selection o f the winning 

neuron is based on the comparison between all weight vectors U . = (un ,uj2,..., ujn) and 

the input vector X s = (xsVxs2,...,xsn) :

After the winning neuron is found, the correction (adaption or learning) o f weights 

starts. The weights o f the winning neuron are modified to the input vector values and in 

the same time the neighboring neurons are modified to become similar to it. The

winning neuron < - min (126)
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corrections do not cover the entire network, not even the same number o f neurons at 

different stages of the learning process. The number and the extension o f corrections 

change during the learning. This means that the correction of weights do not affect all 

neurons in the NN, but only a small number o f them: the ones that are topologically 

close to the winning one. Such corrections cause the topologically close neurons to start 

acting similar if  similar training patterns are presented to the network. This means that 

two similar training patterns w ill excite two topologically very close neurons and vice 

versa; two very different training patterns w ill excite (select) the wining neurons 

topologically far away from each other. Thus, the neurons learn to pinpoint the location 

of the neuron in the network that is most ‘similar’ to the input vector X s . A fter all

training patterns are presented to the network, one learning epoch (cycle) is over. This 

procedure repeats until the weights are stabilized.

Weight Maps

Since the number o f weights in each neuron is equal to the dimension n o f the input 

vector X s = (xsVxs2,...,xsn) , therefore each Nnet x Nnet Kohonen NN consists of

n weights. Before learning starts, all weights in the NN are randomized in 

the interval [0, 1]. Each neuron has the same number o f weights and to each weight at a 

fixed position in the neuron, always the same variable is passed, i.e., the first weight uJ{

handles only the first variable xsl, the second weight uJ2 handles the second variable xs2,

etc. Hence, in each level o f weights only data o f one specific variable is handled. 

Consequently, at the end o f learning in each level, the visualization o f the distribution of 

values o f the particular variable can be seen on a table called a top-map.
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Counterpropagation Neural Networks 

Introduction to Counterpropagation Neural Networks

Hecht-Nielsen proposed CPNN as an alternate function approximator which can be 

developed on the available input-output data [15,16]. The underlying principle for CPNN 

is simple: for a given independent variable vector /  not present in the available data set, 

find the independent variable vector in the data set closest to I. The criterion of 

closeness in the n -dimensional Euclidean space can either be distance based (minimum  

Euclidean distance) or angle based (minimum angle between vectors o f normalized 

lengths). I f  X  k is the vector found closest in the data set then the value o f f  ( I )  can be

approximated as the dependent variable value corresponding to X k . This technique runs

into problems when the data set becomes very large. An important component o f training

in the CPNN is reduction o f the data set into a respective data set o f lesser, specified size

[17]. This is attempted using Kohonen’s learning algorithm, where large sets o f data are

grouped into clusters o f smaller sets o f similar data. Once such a reduction o f the

independent variable vector set is achieved, the estimates o f the dependent variable

values corresponding to the reduced independent variable vectors can also be calculated.

Thus CPNN actually operates as a closest-matched lookup table and training a CPNN is

an attempt to appropriately reduce the size o f this lookup table.

The first counterpropagation network consists o f a bi-directional mapping between

input and output layers. In essence, while data is presented to the input layer to generate

a classification pattern on the output layer, the output layer in turn would accept an

additional input vector and generate an output classification on the network’s input layer.

The network received its name from this counter-posing flow o f information through its
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structure. Most developers use a uni-flow variant o f this formal representation of 

counterpropagation. In other words, there is only one feed-forward path from input layer 

to output layer. Therefore, the forward-only counterpropagation network is discussed. 

Architectures of Counterpropagation Neural Networks

The topology of a counterpropagation network consists o f three primary layers: input 

layer, competition layer or Kohonen layer, and interpolation layer or Grossberg layer, as 

shown in Figure 7.

Competition layer 
(Kohonen layer)

Input layer Interpolation layer 
(Grossberg layer)

mjm

m

FIGURE 7. Counterpropagation neural network architecture.

The input layer of neurons is one to which the external stimuli, in this case the

delamination patterns, are presented. The competition layer is a hidden layer with

competitive nodes performing unsupervised learning. The hidden layer has the same
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structure and the same learning as in SOM stand alone. The interpolation layer is the 

output layer, which is fully connected with the hidden layer and is not competitive. Thus 

the CPNN is an up-grade o f the Kohonen-NN. The main intention for setting up the 

CPNNs is to enable the Kohonen type o f NN to solve the supervised type o f problems. In  

fact, CPNN is a Kohonen-NN augmented by an output layer o f neurons placed exactly 

below the neurons o f the Kohonen layer. Although the output layer o f neurons has 

exactly the same number and the same layout o f neurons as the upper one, its neurons 

contain a different number o f weights compared to the neurons in Kohonen layer. The 

output layer o f neurons, which has as many weight planes as the target vectors have 

responses, is corrected separately and in a very similar way to the Kohonen layer. 

However, there is an important difference. The most distinguished neuron in the output 

layer around which the corrections are made is not the one that is closest to the target, but 

the one exactly below the selected neuron in the Kohonen layer, as shown in Figure 8. 

This means that the topological position o f the winning neuron is identical in both layers: 

in the Kohonen and in the output one, respectively. The weights in the output layer are 

then adapted to the components tsi o f the target vector Ts = ( tsX,ts2,...,tsi,...,tsm)  instead of

to the values xsi o f the input vector.

Before network training is performed, the network architecture needs to be

constructed by choosing the number o f hidden units, M. I f  M  is too small, the neural

network w ill be insufficiently flexible and w ill give poor generalization o f the data

because of high bias. However, if  M  is too large, the neural network w ill be

unnecessarily flexible and w ill give poor generalization due to a phenomenon known as

over-fitting caused by high variance. Some researchers propose a rule o f thumb, which
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states that the number of neurons should be one to three times the number of training 

patterns in a training set

8x8x10 Kohenen layer

Inputs X 
xl ..
x 2  ..

x3
x4

x5

x6 .... 

x? 

x8 

\9
xlO...

Target T (desired output)
t l  .... 

t 2  ..

6 .... 
t4
t5 ...

Target values tj are 
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< :

oi'ihe neuron
CSCslCt; ¥  ilipill \
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'■'I'
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\ \ \
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Output ¥  (computed output)
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y5

Adjusted values yj are 
output for predictions

FIGURE 8. Counterpropagation neural network in array model.

Note: CPNN architecture consists o f two layers o f neurons: the Kohonen and the output 
layers. The central neuron (neuron excited by input X ) is selected in the Kohonen layer 
and then corrections of weights are made around its position (arrow pointing) in the 
Kohonen and in the output layer.

Teaming of Counterpropagation Neural Networks

For training the CPNN, the vectors o f input patterns X  and target or desired output T

are presented to the network at the input and interpolation layers, respectively [18]. Thus,
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the number of nodes in the input and interpolation layers correspond to the number of 

elements in the vectors X  and T, respectively. The vector of computed output is 

represented by Y . The training o f the CPNN is performed in two consequently phases. 

The first phase adjusts the competitive layer and the second phase adjusts the output layer. 

When trained, the network works as follows: after presentation o f an input to the input 

layer, the nodes in the hidden layer sum their inputs and compete to respond to that input. 

The node with the highest input wins and its activation is set to 1 while all others are set 

to 0. After the competition, the output layer calculates a weighted-sum on the outputs of 

the hidden layer. In details, it runs as follows.

For each pair o f input pattern and target (X, T), each component o f input pattern, xt, 

is presented to the corresponding node o f the input layer. Let Uj be the arbitrary initial 

weight vector assigned to the links between input nodes and the yth node in the 

competition layer. The transfer ftmction for the competition layer is defined by the 

Euclidean distance between the weight vector UJ and the input pattern X  as follows:

competes with other nodes and the node with the shortest Euclidean distance to X  wins. 

As a result o f the competition, the output o f the winning node is set to 1.0 and outputs of 

the other nodes are set to 0. Thus the output o f the yth node in the competition layer, Z

is given by

(127)

where M  = j p For the given input pattern A , each node in the competition layer
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z =j'n° v y t t x M
J [0  otherwise

A weight u jj assigned to the link connecting the node j  in the competition layer and

the node i in the input layer is adjusted according to the Kohonen (1988) learning rule

n + \)  = Ujj( n) + a[x, - uJt(n)\Z} (129)

where n is the iteration number and a is the learning coefficient. For the learning 

coefficient, Hecht-Nielsen (1988) suggests a number in the range o f 0 < a < 0.8.

These training steps mentioned above are repeated until all input vectors have been 

classified properly. After the weight vector t / . o f the competition layer stabilizes, the

interpolation layers start to learn the target. Thus, clusters and output vectors are mapped. 

The weight assigned to the link between the winning node j  in the competition layer and 

the/th node in the interpolation layer, v/y, is adjusted according to the learning rule

suggested by Grossberg (1982)

V  n + l )  = vl}( n) + b \ r t + v/y/  n)\Z] (130)

where b is the learning coefficient. Hecht-Nielsen (1988) suggests a number in the range

of 0 < b < 1.0. To circumvent the arbitrary trial-and-error selection o f the learning

coefficients a and b encountered in the counterpropagation algorithm, a simple formula 

is proposed as a function o f the iteration number in the following form

a = b = l/(n  + l) 2 (131)

The interpolation layer uses a weighted summation function as a transfer function. The 

/th element o f the computed output o f the network, Yt , is determined by
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i;=2> a (132)
j

During training, only one node of the competition layer can win and the 

corresponding output is set to 1.0. After connection weights in the network stabilize, the 

performance o f the network can be tested by using untrained patterns. During the 

verification o f untrained patterns, the number o f winning nodes in the competition layer 

can be more than one. The nonzero outputs o f winning nodes are set so that the node 

associated with the weight vector closest to the given untrained pattern has the largest 

output. However, the sum of the outputs o f winning nodes in the competition layer 

remains equal to 1.0. By letting «win be the number o f winning nodes in the competition

layer and Sw be the set o f winning nodes, we define Z . as follows:

node and the untrained pattern. Thus, the output o f the network for untrained patterns is 

calculated by (132) with more than one nonzero output from the competition layer, Z ] .

The selection o f the number o f the winning nodes plays an important role in the 

performance o f a counterpropagation network. Different numbers o f winning nodes in 

the competition layer show different performances. I f  the number o f winning nodes is set 

to one, the winning node is the node whose weights are the closest to the input vector in a 

Euclidean sense. In this case, the CPNN works as a simple nearest-neighbor classifier. I f

V»=i J
(133)

0

where dk is the Euclidean distance between the weight vector assigned to the Ath winning
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the number o f winning nodes is more than one, the accuracy o f the mapping 

approximation can be improved significantly. In this case, the CPNN works as an 

interpolator with multiple winning nodes. The number o f winning nodes in the 

competition layer is selected based on the set o f input vectors (training patterns) in any 

given problem. The optimum number o f winning nodes can be obtained from experience 

and through numerical experimentation.

Operation o f Counterpropagation Neural Networks

After the training is completed, the Kohonen layer in the CPNN acts as a pointer 

device determining for any the position o f the neuron in the output layer in which the 

answer is stored. During the learning procedure, the answers (components o f target 

vectors Ts) are distributed throughout the assembly o f output neuron weights: target

components tt are distributed only in the zth level o f output weights. Because each

output component is distributed throughout the level o f corresponding weights, each 

output neuron contains the answers for all classes even if  its counterpart in the Kohonen 

layer above it was never excited during the training. The values o f the weights in each 

output neuron j  are distributed between 0 and 1 in such a way that the sum o f all m 

output weights is equal to one.

When compared to backpropagation neural network (BPNN), the superior 

convergence property and a substantial decrease in the central processing unit time were 

found for CPNN. The superior convergence o f CPNN is due to the fact that it is less 

sensitive to the learning coefficients. Also, the specific connection weights associated 

with a winning node, instead o f all connection weights, are adjusted to minimize the error
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for a given training pattern. Unfortunately, the current structure o f CPNN is not suitable 

for performing continuous mappings. In the next section, a new type o f CPNN 

architecture is introduced, which possesses the desirable characteristics o f the existing 

CPNN as well as an improvement o f continuous function mapping property.

Improved-Counterpropagation Neural Networks 

Introduction to Improved-CPNN

Detection o f damage in structural systems can be formulated as a direct or an inverse 

problem and solved by means o f a new approach utilizing feature-sensitive neural 

networks [19-22]. In this section, a modified or improved version o f a 

counterpropagation neural network, which belongs to a class o f feature-sensitive neural 

networks, has been selected for solving the damage-detection problem. The major 

reasons for using a feature-sensitive type o f network are the ease with which the CPNN 

can be trained, its ability to model data for a large domain o f a functional relation, and 

development o f approximation for direct and inverse relations at the same time, and work 

with incomplete and noisy input data. The CPNN functions as an associative memory 

device that meets this robustness requirement. The advantage o f using associative 

memories stems from the fact that even a partial knowledge o f certain features may 

suffice to make a perfect recall.

In the neural network approach, possible damage and its extent is detected by relating 

changes in structural response directly to degradation o f structural components. To 

diagnose the condition o f a structure, the input vector, representing damage, is provided 

to the network, and the output vector, representing the system response, is returned. In  

absence o f an exact analytical solution to the problem, approximation yielded by an
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improved-counterpropagation neural network is examined. Improvements to the CPNN 

network include a dynamic adjustment o f the network size, the use o f averaging operators 

for training, and an increased accuracy o f approximations based on a nonlinear blend o f 

interconnection weights.

Disadvantages o f Original CPNN

The original CPNN architecture is basically a combination o f the self-organizing map 

of Kohonen and the outstar structure o f Grossberg [19]. The activation function of 

Kohonen neurons is important because it affects the output o f the CPNN directly. The 

ordinary CPNN uses a threshold logic function in its Kohonen neurons. It is the 

threshold logic function that makes CPNN well suited for pattern classification 

applications. On the other hand, the threshold logic makes CPNN incapable o f 

implementing continuous function approximations. In this case, the continuous functions 

approximated by CPNN are quantized or truncated. Also, the CPNN does not have 

continuous contributions to its output from Kohonen neurons. It “switches” the firing 

Kohonen neuron (or neuron group) from one to another. This switching results in 

different contributions to the output through the Grossberg weights. This is the reason 

why the CPNN output always has small non-smooth regions. There are several ways to 

overcome this problem. One way is to use continuous activation functions for Kohonen 

neurons. The second method is to let the CPNN operate in the interpolative mode, that is, 

to ask more than one neuron (a group o f neurons), instead o f a single neuron, to fire. The 

third way to improve the CPNN performance is to employ nonstandard activation 

functions. These functions should have a gradual decay property after each firing. 

Therefore, the network output depends not only on the current network information but
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on past information as well.

Also, an ordinary CPNN architecture generally requires a large number o f Kohonen 

units to achieve accurate mapping approximation. Since CPNN adjusts its weights to 

conform to the statistics of the input vectors, the number o f Kohonen units required to 

reach a desirable level o f accuracy depends also on the complexity o f the mapping and 

the statistics o f the input-output vector selections (the density of the training sets). 

Generally, the mapping relation (complexity) o f CPNN models and the data 

representation o f the input-output map are specified. Hence, the accuracy o f the mapping 

approximation w ill basically depend on the number o f Kohonen neurons in the Kohonen 

layer. A direct way to improve the function approximation accuracy would be to simply 

increase this number which w ill result in a larger size network and correspondingly 

greater computation time. This cannot, o f course, constitute a feasible solution.

Therefore, a new CPNN architecture w ill be introduced, which avoids these 

disadvantages. The improved-CPNN is proposed as a tool for fast function 

approximations (FFA) [20-22]. In essence, the improved-CPNN is a clustering device 

capable o f optimal distribution o f cluster examplars in a uniform sample space with an 

integrated interpolation scheme to improve the accuracy o f approximations.

Architectures o f Improved-CPNN

There are three distinct components in the improved-CPNN architecture as shown in 

Figure 9. These are a fan-out layer, a hidden layer o f feature-sensitive neurons, and an 

interpolator o f outstar.

The hidden layer o f neurons is essentially a clustering device which for continuous 

mappings classifies input patterns presented to them on the basis o f some distance
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measure. The unsupervised learning o f the feature-sensitive neurons is based on the 

minimum disturbance principle. According to this principle only that weight vector 

which is the closest in the sense o f the selected norm to an input pattern is updated. To 

describe a flow o f information through the network, assume that a set o f training data

contains M  samples of some mapping, <() .* X  e Rn —» T e R m, and that a sample space is 

uniform. As the structure o f the fan-out layer shows in Figure 9, an input pattern is 

simply a juxtaposition o f both input and output vectors, and, therefore, can be defined as

a vector Pt = [X, T ] T= [P IN , target] T e Rn+m, i = 1 ,..., M. Since the input patterns are

directly passed to the first processing layer o f the network, the weight vectors o f the 

feature-sensitive neurons that are to be determined during the training are defined as 

Zj = \zv . . . ,  zn, zn+v . . . ,  zn+m, ] r e Rn+m, and are elements o f the same space as the

input patterns. Such a definition o f the input patterns, and consequently the weight 

vectors, has interesting ramifications. First, the improved-CPNN may model a direct 

relation, its inverse, or both at the same time. This can be easily achieved by specifying 

with respect to what part o f the training pattern, P, is clustering to be performed. The

direct relation would require the first through nlh component, the inverse relation, the 

(n + i f  through (n + /wf, and for both relations the whole pattern would have to be 

considered. The distinctive feature o f the neural network approach is that the data 

required to model an inverse relation are simply obtained as the solution o f the direct 

problem. By interchanging the input and output vectors during the training process, an 

approximate model o f the inverse relation is developed. Second, the clustering procedure 

can virtually use any part o f the training pattern, allowing for further flexib ility such as an
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incomplete direct or incomplete inverse relation, and distorted patterns. This property 

may be explored in the use of the network as an associative memory device.

feature-sensitive
neurons

fan-out
neurons

interpolator

h  =  f(d )

m

FIGURE 9. Improved-counterpropagation neural network architecture.

Note: Improved-CPNN architecture of mapping X  eR" I—> T e Rm

The number of the feature-sensitive neurons, or the size of the network, k, depends 

on a value of the network resolution, 8r, and changes dynamically during the training 

process. The resolution may be thought of as the size of a mesh in a multidimensional 

sample space, or approximately the distance between the closest cluster examplars, and, 

therefore, directly related to the accuracy of network approximations.
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The purpose o f the interpolator is to take T cluster examplars found to be the closest 

to an input vector (the 8-neighborhood), and to blend them into a single output vector on 

the basis o f a nonlinear averaging scheme. Therefore, network response is defined as a 

vector, Y  = f { z s\  s = 1 , . . r . The number o f examplars participating in a network

response is determined by a parameter, 8 (size o f neighborhood), which is essentially a 

distance measure. A value o f this parameter (size o f neighborhood) is set during testing 

to minim ize a response error.

Learning o f Improved-CPNN

There are several new features in the modified version o f the CPNN that improve its

performance and facilitate its use. A control parameter Sr, referred to as a network 

resolution, is the only arbitrary parameter required to determine the size o f a network and 

control accuracy o f approximations. An averaging operator (an arithmetic mean) is used 

to determine the outstar weights during the training and to places the weight vector at the 

geometric center o f all outputs for which the connection is updated; in addition, it 

eliminates a learning rate required by the original network. Finally, and perhaps most 

importantly, a nonlinear interpolation scheme is introduced to increase the accuracy o f 

network estimates. This scheme blends several outstar weights in constructing a network 

response.

There are several measures that may be used for defining the network resolution 

value. In problems where the network is employed as a function estimator, the absolute

n

value or Manhattan norm defined for two arbitrary vectors x and y  as,|| . |  = ^  |x, -_y,|,
( = i

is preferred. This norm is equally sensitive to each vector component, a feature shown to
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be essential in the vector matching procedure used in the learning rule o f the network. It 

is also clear that this norm does not require normalized vectors to be processed. This is 

distinctly different from the distance measure used in the original CPNN, where the dot 

product o f the normalized vectors was used. For normalized vector components and the 

length o f a vector equal to n , the range o f a resolution is 0 to 0.8 n . These lim it values 

produce a network o f the size equal to the total number o f the training samples and unity, 

respectively.

Operation o f Improved-CPNN

In operation, the network returns an approximation o f the T vector when presented

with some input vector, X & I T . In the improved version o f the CPNN, a nonlinear 

interpolation scheme based on a membership function has been introduced to increase 

accuracy o f network response. The process o f developing approximations can be 

summarized as follows. First, the minimum operator finds the best match u . for the

vector X  among all k weight vectors o f the hidden layer; it also computes the distance 80 

between the weight vector o f the winning neuron u . and the input vector. Then, the 8 - 

neighborhood o f the closest neuron is defined as containing all neurons for which 

distance is less than (S0 + 8) from the current input. Next, an index set, S , is determined 

that contains all indices, s , for which the following relation holds,

m

8S = ^ |x , -  zls\ < 80 + 8 , where 1 < s < k . Since each neuron in the hidden layer is
/ = i

connected to all outstarts, the network response may be calculated as a nonlinear blend o f

x

the outstars interconnection weights ̂  hszs . To compute an individual contribution hs o f
s=1
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each neuron to the network response, Y , a membership function, f ( d s), defined as a 

power function, f ( d s) = l - d sr, is used. Here dsis a normalized distance calculated as 

ds —180 — 85|/S . The contribution, hs, o f each neuron is normalized as

hs = (l -  dsr 1 -  dsr), so that the contribution o f all neurons adds up to one. It is

worth noting that the number o f contributing neurons depends on the value o f 8 (size o f 

neighborhood), and may vary for different input vectors. In the case where the winning 

neuron coincides with the input vector or is very close to it, the winner almost certainly 

becomes the sole contributor to the response. But in the case where there is no decisive 

winner, the blend o f many weight vectors is created as the output. The control parameter 

8 is set during the testing to minimize a response error. The shape o f the membership 

function, and hence the relative contribution o f the participating neurons is controlled by 

the power r . Its value has to be adjusted to minimize the error; it is usually in the range 

0.1 -  6.0. Figure 10 illustrates how the individual contribution changes for different 

values of the exponent, r. In all applications, this interpolating scheme significantly 

reduced about 30-40%  o f error in the approximations. This indicates that the network 

response is developed through a nonlinear interpolation procedure with an advantage o f 

removing the sharp boundaries among clusters.

Thus, the neural network approach to the damage detection problem proved to be a 

promising alternative to more traditional techniques, particularly for on-line damage 

detection when the processing efficiency becomes an important issue.
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FIGURE 10. The individual contribution of each neuron changes for different values of 
the exponent, r.
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CHAPTER 6

GENETIC ALGORITHMS

Detection o f structural damage is an inverse problem in structural engineering. The

solution space o f this problem is multi-modal, which exist at many local optima. In a

multi-modal problem, the solution using the h ill climbing method may often be trapped

into a local optimum. There are three main questions in the damage detection: the

existence, location, and extent of damage. The detection o f delamination sizes and

locations of delaminated laminates can be formulated as an optimization problem. In this

section, GA is employed to find the optimal solution by minimizing the error o f the

response characteristics (frequencies) between the analytical model and the measured

data o f the delaminated laminates. Unlike the traditional mathematical methods, which

guide the direction o f h ill climbing by the derivatives o f objective functions, GA searches

the problem domain by the objective function itself at multiple points. Thus, GA is an

alternative class o f optimization method but does not rely on the slope for optimization.

Genetic algorithm (GA) was inspired by Darwin’s theory o f natural evolution and

selection [23-26]. Genetic algorithm is a simulation o f natural evolution where the law o f

survival o f the fittest is applied to a population o f individuals. The philosophy of survival

of the fittest facilitates arrival at the globally optimal solution; the methodology is

implemented numerically and developed for optimization problems, where natural

evaluation and adaptation to environmental variation is simulated mathematically by

using GAs. Thus, GAs are stochastic optimization methods and provide a powerful
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means to perform directed random searches in a large problem space as encountered in 

damage detection. Analogous to genes in genetics, GA represents the parameters in a 

given problem by encoding them in a string. Instead o f finding the optimum from a 

single point in traditional mathematical optimization methods, in GA a set o f points, that 

is a population o f coded strings, is used to search for the optimal solution.

/  Are \  
Optimization 

Criteria > 
\  M e t? /

Crossover

Selection

Fitness Evaluation

Fitness Evaluation

Optimal Design

Random Generation 
of Initial Population

FIGURE 11. Structure o f a simple genetic algorithm.
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The search is initiated by selecting a number o f candidate design variables either 

randomly or heuristically in order to create an initial population (possible solutions, or 

first generation), which is then encouraged to evolve over generations to produce new 

designs which are better or fitter. This improvement is achieved through the processes of 

evaluation, reproduction, breeding, and mutation. A flow chart diagram o f the GA 

process is shown in Figure 11.

Initial Population

GA starts with encoding design variables which converts the design variables into bit 

strings that are counterparts o f chromosomes in biological genetics. The bit strings can 

be coded by binary or real numbers that are most widely used in GAs. Before applying a 

GA to a task, the selection o f an initial population must first be developed, which consists 

of a set o f points selected from within the search space. The size o f the initial population 

is maintained constantly through all generations and is increased with the size o f design 

problems. The larger population maintains its diversity longer and finds better solutions. 

The smaller population seems to become homogeneous quickly, and from that point on 

improvement is slow, driven primarily by mutation. However, the smaller population 

arrives at better answers much faster than the larger population. This indicates that large 

populations are less influenced by good potential solutions early on, analogous to having 

a greater degree o f inertia. Consequently, there is a tradeoff between the convergence 

rate and the fitness o f the final answer. In summary, if  the population is oversized, this 

w ill adversely impact the speed o f convergence, thereby diminishing the efficiency o f the 

search. Conversely, an undersized population w ill enhance the chances o f premature 

convergence on a non-optimal solution, thus impacting search reliability. The initial
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population is sometimes artificially manipulated by various means in an attempt to 

improve the performance of the genetic search. One special technique is seeding, whose 

effect is to nudge the search onto a favorable path through the search space [27]. When 

seeded, the GA quickly improves the approximation and finds a network that gives the 

desired output. Seeding verifies that there is a correct answer and that the GA could find 

it.

Mechanics of Genetic Algorithms

After initialization of the first generation, the fitness of each individual is evaluated 

by an objective function (step 1). In the reproduction step (step 2), the genetic operators 

of parent selection, breeding (step 3) and mutation (step 4) are applied, thereby providing 

the first offspring generation. Iterations of steps 1 to 4 are performed until the objective 

function converges or the process is externally terminated. In detail, the four-step 

processes are shown below [28].

Evaluation

The first step in each generation is to evaluate the current chromosomes. This is the 

only step where we use the interpretation of the chromosome; in all other steps, the 

chromosome is treated as a bit string. Each chromosome in the population is decoded 

and the resulting network is tested with the training data. To evaluate networks, we 

calculate the maximum of relative error (MRE) which is defined as an objective function 

for the training set between measured and predicted by FEA and CPNN, respectively.

With the fitness of the chromosome equal to 1/(1+M R E), this means that the better a 

network performs, the higher its fitness, with a perfect network having a fitness of 1.
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Reproduction

The next step in each generation is to create a new population based on an evaluation 

of the current one. To generate fitter strings, GA reproduces the population according to 

their relative fitness; the strings with higher fitness have a better chance o f passing their 

genes to the next generation. Thus, reproduction takes successful chromosomes and 

reproduces them in accordance to their fitness functions. Every chromosome generates a 

number of copies of itself based on its performance, with the best chromosomes 

producing several copies of themselves and the worst not producing any. This is the step 

that allows GAs to take advantage of a survival-of-the-fittest strategy.

The selection of mating pairs for reproduction is a crucial step in GA. There are 

several ways to calculate the number of offspring generated by each chromosome. The 

most common technique is rationing: each chromosome produces a number of offspring 

proportional to its fitness, with the restriction that the total number of chromosomes per 

generation remains constant. Thus, if  one chromosome’s fitness is twice that of another, 

the superior chromosome would produce twice as many offspring. However, there are 

two major problems with this method. First, if  all the chromosomes have a similar fitness, 

each member in the population would produce one offspring. This results in little 

pressure to improve the fitness of the population. Second, if  one chromosome has fitness 

much larger than any other, that chromosome would create most, if  not all, of the new 

offspring. The chromosome would dominate the population, resulting in a loss of genetic 

diversity. This problem has been labeled premature convergence.

The other method is ranking, in which the whole population is sorted by fitness. The 

number of offspring each chromosome generates is determined by how it ranks in the
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population. A typical example of the ranking method can be described as follows. The 

top 20 percent of the population generates two offspring each, the bottom 20 percent 

generates no offspring, and the rest generates one offspring each. No one chromosome 

can overpower the population in a single generation, and no matter how close the actual 

fitness values are, there is always pressure to improve. The primary disadvantage o f 

ranking is speed, because better chromosomes cannot easily guide the population, forcing 

good answers to develop more slowly.

The Tournament Selection (TS) method provides good selective pressure by holding 

a tournament competition among N(= 3) individuals. The best individual (winner) from 

this tournament is the one with the highest fitness and the winner is then inserted into the 

mating pool. The tournament competition is repeated until the mating pool for generating 

new offspring is filled. The mating pool comprising the tournament winners has a single 

average fitness.

Breeding (crossover) '

The previous step creates a population whose members are currently the best at 

solving the problem; however, many of the chromosomes are identical, and none differ 

from those in the previous generation. Breeding combines chromosomes from the 

population and produces new chromosomes that, while they did not exist in the previous 

generation, maintain the same gene pool. In natural evolution, breeding and reproduction 

are the same step, but in GAs they have been separated to allow different methods for 

each to be experimented with and independently evaluated. In biological reproduction, 

the chromosomal pattern of the child is derived from the chromosomal strings o f the two 

parents and consequently the child inherits the characteristics of both. In GA, breeding
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can exploit knowledge of the gene pool by allowing good chromosomes to combine with 

chromosomes that are not as good. This is based on the assumption that each individual, 

no matter how good it is, does not contain the answer to the problem. The correct answer 

is contained in the population as a whole, and can only be found by combining 

chromosomes.

There are several methods for breeding, the most common being crossover. The 

crossover operator mixes genetic information in the population by cutting pairs of 

chromosomes at random points along their length and exchanging over the cut sections. 

Many variations on crossover have been used, but there is no consensus as to which is 

best. The process of crossover ensures that design information is transferred from one 

generation to the next, essentially by a simple swapping of one (single-point) or two 

sections (two-points) of bit string representation of two parent-designs to obtain two 

offspring design solutions. The positioning and extent of crossover time is chosen at 

random and may be different for each mating couple in each generation.

Mutation

Following crossover, the natural evolution concept of mutation is introduced into GA  

via the occasional switching of the bit value at a randomly selected location of the 

generated strings. This action is important since it guards against premature convergence 

of the design towards an optimal solution. The procedure is repeated until the new 

generation ceases to improve according to the objective function. When this occurs, the 

fittest individual o f the youngest generation represents optimal design solution.

GAs usually require a large number of iterations and thus has a high computational 

cost. The genetic search procedure requires a proper selection of crossover and mutation
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operators. Goldberg’s study of genetic algorithms in function optimization suggests that 

good genetic algorithm performance requires the choice o f a high crossover rate, a low  

mutation rate (inversely proportional to the population size), and a moderate population 

size. In summary, after reproduction, a one-point crossover with the probability of p c is

performed to evolve new offspring. The probability p c in this study is 0.5. In addition,

to inhibit premature convergence during the reproduction and crossover, mutation is 

implemented to maintain the genetic variability of the strings. Mutation is conducted 

with the probability of p m = 0.005 -  0.02.
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CHAPTER 7

RESULTS AND DISCUSSION 

The detection of single internal delamination has been addressed in the present study

and only the rectangular delamination configuration was considered. To save 

computational time, an eight-ply carbon-epoxy laminate with stacking sequence [0 /  90] 2 v 

was adopted. The ply thickness is 0.0127 cm and the material properties are 

£, = 134.4GPa ,E2 = 10.34GPa ,Gn = 5.0GPa, v12 = 0.33, and p = 1477kg/m 3. Its in

plane geometry is 8 cm long and 4 cm wide. In order to prevent the occurrence o f 

frequency-identical delaminations which are symmetric to the central line, the left and 

lower edges of the laminate plate are fixed while the upper and right edges are free. The 

geometry and boundary conditions for the laminate plate are shown in Figure 12.

FEA Model

To construct a CPNN, finite element analysis was used to calculate the natural 

frequencies of laminate plate with different delamination patterns. FEA provides all the 

training and validation data sets for both neural network and genetic algorithms. 

Therefore, the accuracy of FEA model directly affects the outcome of delamination 

location detection. The finite element mesh consists of four-node quadrilateral plate 

elements and delamination patterns in the central area of the plate are considered. The 

data sets (including delamination patterns and associated natural frequencies) have been 

generated to train and validate neural networks. Each delamination pattern is represented
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by a mixed type of data structure expressed in the form \zd, xd, yd, ax, ay\ which consists 

of four real (continuous) variables and one integer (discrete) variable. These variables 

comprise two real variables (xd, y d) specifying the in-plane coordinates of the left-lower

comer o f the delamination, two real variables^, ay) specifying the length and width o f 

the delamination, and one integer variable (zd) specifying the thickness location o f the 

delamination which is defined as the number o f layers above the mid-plane where 

delamination occurs. When delamination occurs at the mid-plane, the value of zd is 

taken as 0. Due to the symmetry of the layup, only delamination occurring in the upper 

half of the laminate has been considered. Thus, the range of zd is limited to [0, 1, 2, 3] 

for the laminate layup considered in the present study.

Ly
i

r • ■    8 cm   -
14 i

 ~r~

4 cm

FIGURE 12. Geometry and boundary conditions for the internal delamination.
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FIGURE 13. A laminate plate of dimension 8cm x 4cm with five different mesh sizes: 
10x5,12x6,16x8,18x9, and 20x10.

To choose the best set of training and validation data sets, five different finite element

mesh sizes have been used to calculate the natural frequencies of the 8 cm long by 4 cm

wide laminate plate as shown in Figure 13. The finite element mesh size, the percentage

of delamination, and the number of data sets are shown in Table 5. The mesh size 20x10

was used for training data sets, while the other four mesh sizes (18x9, 16x8, 12x6, 10x5)

were used for validation data sets. After being validated with the same trained CPNN,

different validation mesh sizes show different values of errors. As shown in Table 6,

mesh size 18x9 has the smallest value of the overall relative mean error. Therefore, mesh

size 18x9 was chosen as the validation mesh for mesh size 20x10 and as the training
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mesh of neural network in the present study.

TABLE 5. FEA Data Sets Training Time for Plate Dimension 8cm x 4cm

Mesh Size Percentage of Delamination Data Sets Training Time
20% 12 49 sec

10x5 60% 504 39 min
100% 3,300 5 hrs 07 min

12x6 100% 6,552 25 hrs 10 min
16x8 100% 19,584 14 days 17 hrs 37 min
18x9 100% 30,780 40 days 17 hrs 19 min

20% 120 5 hrs 09 min
40% 1,440 2 days 17 hrs 31 min

20x10 60% 6,552 13 days 9 hrs 15 min
80% 19,584 43 days 16 hrs 25 min
100% 46,200 114 days 2 hrs 25 min

TABLE 6. Trained CPNN Errors Between Different Validation Mesh Sizes

Validation mesh size (100%) 10x5 12x6 16x8 18x9

Validation data sets (100%) 3,300 6,552 19,584 30,780

Overall relative mean error 0.0529 0.0294 0.0086 0.0039
Note: A trained CPNN with mesh size 20x10 (100%) has 46,200 data sets. After being 
validated with different validation mesh sizes, the values of overall relative mean error 
(rmeanALL) decreased as the mesh size increased.

Neural Networks

Various CPNNs have been tested and trained using different parameter settings. To 

find the best CPNN, the first ten natural frequencies have been adopted (i.e., nm—10).

The natural frequencies of these delamination patterns calculated by finite element 

analysis were compared with those simulated by the trained CPNN. An overall relative 

mean error (referred to MATLAB codes as rmeanALL) has been used to indicate the

100



www.manaraa.com

accuracy of the trained CPNN and is defined as follows:

k=1 j=l
®fc/,FEM ®  A/.CPNN

8 = (134)

where the subscripts k and j  denote the j-th  natural frequency of the &-th delamination

pattern, nm is the number of output frequencies used to detect the delamination and nv is

the number of validation data sets. From equation (134), the value o f overall relative 

mean error is disproportional to the number of training data sets, but inversely 

proportional to the number of validation data sets. Thus, the mesh size of validation data 

sets that are coupled with the mesh size of training data sets w ill affect the performance 

of the trained neural network, which is indicated by the value of overall relative mean 

error, as shown in Table 6. The MATLAB codes were developed by Dr. H. P. Chen and 

used in the present study to construct a CPNN for function approximation.

CPNN Parameters Selection

Network Resolution (dr)  and Size of Neighborhood (referred to M ATLAB codes as 

interpolationSize) are two parameters which play an important role in the performance of 

CPNN. The value of overall relative mean error (rmeanALL) and total number of 

neurons in layer 1 (nuLl, or size of the network) in the neuron networks can be used as 

indicators to select the suitable parameters. First, gradually decrease the value of dr to 

decrease the value of overall relative mean error (rmeanALL) and stop when the total 

number of neurons in layer 1 (nuLl) is equal to the number o f training data sets (46,200). 

Then further decrease dr until rmeanALL reach the minimum. Table 7 shows that 

different network resolution (dr)  settings provide a variety of total number of neurons in
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layer 1 (nuLl) and overall relative mean error (rmeanALL). In Table 7, 8r = 0.003 is 

selected.

TABLE 7. Selection of Control Parameter, 8r

Run 8r nuLl rmeanALL rrmeanALL Training Time

1 0.08 134 0.0187 0.0232 27.91 sec

2 0.04 1,041 0.0123 0.0157 181.87 sec

3 0.02 5,987 0.0089 0.0114 991.14 sec

4 0.01 18,033 0.0074 0.0095 3,111.61 sec

5 0.008 22,914 0.0070 0.0091 3,408.91 sec

6 0.006 29,483 0.0065 0.0086 4,350.83 sec

7 0.004 38,672 0.0061 0.0081 5,308.97 sec

8 0.003 46,200 0.0057 0.0076 6,271.22 sec

9 0.002 46,200 0.0057 0.0076 6,279.53 sec
Note: The value of preset parameters are: interpolationSize = 0.04, and rlnt = 1

TABLE 8. Selection of Size of Neighborhood (interpolationSize)

Run interpolationSize rmeanALL rrmeanALL Training Time 

6,271.22 sec0 0.04 0.0057 0.0076

1 0.03 0.0048 0.0064 6,290.24 sec

2 0.02 0.0040 0.0054 6,222.02 sec

3 0.01 0.0039 0.0052 6,248.31 sec

4 0.009 0.0040 0.0053 6,250.68 sec

5 0.008 0.0041 0.0055 6,249.37 sec

After control parameter 8r has been determined, decreasing the value of size of 

neighborhood (interpolationSize) will decrease the value of overall relative mean error 

(rmeanALL). Further decreasing the value of size of neighborhood w ill allow overall
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relative mean error to reach a minimum value, as shown in Table 8. In Table 8, 

interpolationSize = 0.01 is selected. Thus, the combination of network resolution ( dr ) 

equal to 0.003 and size of neighborhood (interpolationSize) equal to 0.01 w ill produce a 

CPNN with an overall relative mean error equal to 0.0039. The summary of the best set 

of parameters is shown in Table 9.

TABLE 9. Summary of Best Set of Parameters

Training Validation

Mesh size 20x10 (100%) 18x9 (100%)

Samples (data sets) 46,200 30,780

nuLl 46,200 30,780

rlnt 1 1

8r 0.003 0.003

interpolationSize 0.01 0.01

rmeanALL 0.0039 0.0039

rrmeansALL 0.0052 0.0052

Genetic Algorithms

A tailored genetic algorithm for the detection of single internal delamination has been 

developed. This GA consists of the tournament selection operator with size of 3, two 

genetic operators (crossover and mutation) with associated probabilities, population size, 

and termination criterion. In addition, an elitist strategy, in which the best individual 

found so far w ill survive and be selected by the next generation, is adopted in the current 

GA. Since there is no constraint to be satisfied, the objective function /  o f equation (120) 

is taken as the fitness function in the genetic algorithm.
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GA Paramenters

A genetic algorithm has been developed to suit the present delamination detection 

problem. Several numerical investigations have been conducted to determine the best 

GA parameters setting and their combination in the previous research studies by Hieu 

The Le and Jin-Hwan Kim [7, 8]. It is believed that not only each parameter setting but 

also a combination of parameters has a strong effect on GA performance. Since many 

variables should be considered in GA parametric study, thus GA parametric study is 

complicated and time-consuming. GA results are satisfactory when the tournament 

selection is adopted as the selection operator in which a set o f three individuals is picked 

at random and the best individual in this set w ill be selected by the mating group. For 

genetic operators, one-point crossover with probability p c = 0.5 and uniform mutation

with probability p m = 0.02 are adopted. The population size is chosen to be 200 and the

total number of generations before termination is set to 100. In general, uniform 

mutation performs better than non-uniform mutation and 1-point crossover performs 

better than 2-points crossover.

Results

GAs results and errors are listed from Tables 10 to 21; even numbered tables are for

results and odd numbered tables are for errors. Their natural frequencies are simulated

using the best trained CPNN mentioned above. Ten runs using the GA have been

performed for each delamination pattern. The actual delamination pattern corresponding

to the given frequencies, the mean predicted delamination pattern, and the best predicted

delamination pattern among the 10 runs are listed in the even numbered tables. In Tables

10 and 12, eighteen delamination patterns at the center of the plate are considered and to
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be detected for layer 0 and layer 3, respectively. It is observed that cases 1 to 7, which 

are considered as small size delaminations (less than 17% of the plate area), are difficult 

to be detected.

TABLE 10. Mean and Best Predicted Delamination Patterns in Central Area of Plate at 
Layer 0

Case
Actual 

Delamination Patterns
[zd,xd,yd,ax,ay

Mean Predicted 
Delamination Patterns

[zd > xj > y<i > ax > ay ]mean

Best Predicted 
Delamination Patterns

lzd ’ xd> yd> ax, ay Jbest

1 [0,3.56, 1.33, 0.89, 1.33] [2.0, 6.13, 1.73,0.75, 0.98] i ,3.59, 1.60, 0.66, 1.30]
2 [0, 3.56, 0.89, 0.89, 2.22] [1.4,4.66, 1.13,2.16, 1.41] [0, 3.53, 1.48, 1.04, 1.25]
3 [0,3.56, 0.44, 0.89,3.11] [1.7,3.70,0.60,1.93,2.20] [1.3.64,0.12, 0.66,3.79]
4 [0,3.11, 1.33, 1.78, 1.33] [1.2,4.98, 1.08,2.02,1.72] [1,3.23, 1.06, 1.71, 1.43]
5 [0,3.11,0.89, 1.78,2.22] [1.1,4.51, 1.18,4.94, 1.73] [|,3.16, 0.80, 1.80, 2.32]
6 [0,3.11,0.44, 1.78,3.11] [1.1,3.30,0.38,4.59,2.22] [0, 3.26, 0.54, 1.67, 3.35]
7 [0, 2.67, 1.33, 2.67, 1.33] [0.9, 5.53, 1.03, 2.89, 1.69] [1,2.88, 1.24,2.47, 1.43]

8 [0, 2.67, 0.89, 2.67, 2.22] [0.7,3.46, 0.82,3.69,2.15] [0,2.31,0.67, 2.53, 2.27]
9 [0, 2.67,0.44, 2.67,3.11] [1.0,3.58, 0.98,4.86,2.91] [0,3.26, 0.26,2.26, 3.42]
10 [0,2.22, 1.33,3.56, 1.33] [1.3,3.29, 0.98,3.02, 1.99] [0,2.55, 1.32, 3.11, 1.41]
11 [0,2.22, 0.89, 3.56, 2.22] [0.9,3.39, 0.92, 4.36,2.54] [0,2.13,0.91,3.40, 2.25]
12 [0, 2.22, 0.44,3.56,3.11] [0.2,4.30, 1.89,4.93,3.67] [0,2.56, 0.53,3.36,3.33]
13 [0, 1.78, 1.33,4.44, 1.33] [0.5,3.55, 1.19,3.67, 1.61] [0, 1.34, 1.39, 3.52, 1.45]
14 [0, 1.78, 0.89, 4.44,2.22] [0.3,3.67,1.13,6.17,2.16] [0,2.12,1.08, 5.49, 1.90]
15 [0, 1.78, 0.44,4.44,3.11] [0.0,4.05, 1.38,5.45,2.93] [0,4.17, 1.07, 5.60, 2.97]
16 [0, 1.33, 1.33,5.33, 1.33] [1.1,4.22, 1.18, 5.07, 1.72] [2, 1.13,1.37, 5.50, 1,75]
17 [0, 1.33, 0.89, 5.33,2.22] [0.1, 1.42, 0.99, 6.44,2.12] [0, 1.20, 0.98,5.54, 2.19]
18 [0, 1.33,0.44, 5.33,3.11] [0.2,3.29,0.97, 6.77,3.21] [0, 1.47, 0.34, 5.05, 3.07]
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TABLE 11. Detection Errors in Central Area of Plate at Layer 0

Case

Finite
Element
Pattern

Size

Actual
Ply

Location
Zactual

Mean
Predicted

Ply
Location

^raean

Best
Predicted

Ply
Location

^best

Mean
RRMSE

Best
RRMSE

Elapsed
Time

(seconds)

1 2x3 0 2.0 2 0.00168 0.00152 1944.06
2 2x5 0 1.4 0 0.00224 0.00186 1873.40
3 2x7 0 1.7 1 0.00242 0.00125 1812.77
4 4x3 0 1.2 1 0.00587 0.00368 1761.47
5 4x5 0 1.1 1 0.01382 0.00668 1707.13
6 4x7 0 1.1 0 0.01412 0.00392 1844.51
7 6x3 0 0.9 1 0.00705 0.00406 1799.91

8 6x5 0 0.7 0 0.01380 0.00699 1812.00
9 6x7 0 1.0 0 0.01893 0.00753 1768.68
10 8x3 0 1.3 0 0.00989 0.00370 1860.71
11 8x5 0 0.9 0 0.01703 0.00642 1672.56
12 8x7 0 0.2 0 0.02075 0.00711 1736.58
13 10x3 0 0.5 0 0.00782 0.00689 1687.55
14 10x5 0 0.3 0 0.01259 0.00766 1683.43
15 10x7 0 0.0 0 0.01805 0.01638 1701.27
16 12x3 0 1.1 2 0.00710 0.00821 1678.29
17 12x5 0 0.1 0 0.01120 0.00703 1679.43
18 12x7 0 0.2 0 0.01592 0.00584 1684.39

Comparison between Tables 10 and 12 reveals that the small size delaminations are even 

more difficult to be detected precisely at near surface (zd -  3, where the frequency of

near surface delamination is close to that of healthy one). For all other cases, results are 

satisfactory. An exception is when a delamination with length to width ratio is close to 4, 

the detection is normally off by two layers, or difficult to be detected precisely, as in case
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case 16 in Table 10.

TABLE 12. Mean and Best Predicted Delamination Patterns in Central Area of Plate at 
Layer 3

Case
Actual 

Delamination Patterns
\zc >x , / . y,/ > ax, J actuaI

Mean Predicted 
Delamination Patterns

\zd - xd >y,i’ax, Jmean

Best Predicted 
Delamination Patterns

[zcl,xd,yd,ax,ay\besl

1 [3,3.56, 1.33, 0.89, 1.33] [1.4,3.01, 1.39,3.37, 0.48] [3, 5.39,0.84, 2.87, 0.48]
2 [3,3.56,0.89, 0.89,2.22] [1.4,3.01, 1.39,3.37, 0.48] [3, 5.39, 0.84,2.87, 0.48]
3 [3,3.56, 0.44, 0.89,3.11] [1.4,3.51, 1.21,3.42, 0.48] [3, 5.39,0.84,2.87,0.48]
4 [3,3.11, 1.33, 1.78, 1.33] [1.3,3.01, 1.45,3.21,0.48] [3, 5.39,0.84,2.87, 0.48]
5 [3,3.11,0.89,1.78,2.22] [2.6, 0.83, 0.70, 1.57, 1.47] [3, 2.72, 1.07,2.40, 0.93]
6 [3,3.11,0.44, 1.78,3.11] [2.5, 2.30,2.05, 1.30,3.30] [3,3.03,2.52, 1.64,3.15]
7 [3,2.67,1.33,2.67, 1.33] [2.7, 0.70, 1.06,2.31,1.27] [3, 0.35, 1.03,2.00, 1.38]

8 [3,2.67, 0.89, 2.67, 2.22] [2.5,2.80, 0.74,3.65,2.16] [3,2.46, 0.94,2.78, 1.94]
9 [3,2.67,0.44,2.67,3.11] [2.7,2.66, 0.72,2.66, 2.92] [3,2.59, 0.53,2.39,3.14]
10 [3,2.22, 1.33,3.56, 1.33] [3.0, 1.84, 1.14,4.43, 1.18] [3, 1.90, 1.32,3.55, 1.17]
11 [3,2.22, 0.89, 3.56, 2.22] [2.7, 2.18, 0.78, 3.69, 2.42] [3,2.43, 0.91,3.21,2.45]
12 [3,2.22,0.44,3.56,3.11] [2.5, 2.01, 1.34, 3.48, 2.79] [3, 2.40, 0.49, 3.37, 3.07]
13 [3, 1.78, 1.33,4.44, 1.33] [3.0,2.64, 1.09,4.69, 1.45] [3, 1.94, 1.37, 3.91, 1.38]
14 [3, 1.78, 0.89,4.44, 2.22] [3.0, 2.42, 0.84, 5.26, 2.26] [3, 1.78, 1.01,4.27,2.16]
15 [3, 1.78,0.44, 4.44,3.11] [3.0,3.26, 0.56,5.35,3.34] [3, 1.50, 0.53, 4.66,3.10]
16 [3, 1.33, 1.33, 5.33, 1.33] [3.0,2.36, 1.07,4.34, 1.64] [3, 1.27, 1.35,4.81, 1.37]
17 [3, 1.33,0.89,5.33,2.22] [3.0, 3.26, 0.60, 5.80, 2.67] [3, 1.56, 0.67,5.01,2.36]
18 [3, 1.33, 0.44,5.33,3.11] [3.0, 2.90, 0.73,6.33, 2.96] [3, 1.30, 0.76,5.25,2.71]
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TABLE 13. Detection Errors in Central Area of Plate at Layer 3

Case

Finite
Element
Pattern

Size

Actual
Ply

Location
2Tactual

Mean
Predicted

Ply
Location

■̂ mean

Best
Predicted

Ply
Location

■̂best

Mean
RRMSE

Best
RRMSE

Elapsed
Time

(seconds)

1 2x3 3 1.4 3 0.00337 0.00337 1706.55
2 2x5 3 1.4 3 0.00324 0.00324 1626.47
3 2x7 3 1.4 3 0.00312 0.00312 1786.53
4 4x3 3 1.3 3 0.00331 0.00331 1701.79
5 4x5 3 2.6 3 0.00367 0.00336 1702.90
6 4x7 3 2.5 3 0.00420 0.00396 1694.42
7 6x3 3 2.7 3 0.00389 0.00359 1729.97

8 6x5 3 2.5 3 0.00597 0.00433 1705.77
9 6x7 3 2.7 3 0.00663 0.00317 1670.35
10 8x3 3 3.0 3 0.00429 0.00377 1624.48
11 8x5 3 2.7 3 0.00575 0.00427 1727.39
12 8x7 3 2.5 3 0.00972 0.00426 1740.69
13 10x3 3 3.0 3 0.00478 0.00400 1703.07
14 10x5 3 3.0 3 0.00778 0.00358 1655.82
15 10x7 3 3.0 3 0.00710 0.00439 1739.12
16 12x3 3 3.0 3 0.00465 0.00376 1640.24
17 12x5 3 3.0 3 0.00567 0.00402 1685.57
18 12x7 3 3.0 3 0.00600 0.00331 1666.48

In Tables 14 and 16, eighteen small size delamination patterns (less than 17% of the

plate area) are considered and to be detected for layer 0 and layer 3, respectively. Cases

1 to 6 are at the center of the plate, cases 7 to 12 are at the left-center (one element away

from the left boundary), and cases 13 to 18 are at the right-center (one element away

from the free edge). After comparing between center, left, and right, it is observed that

the delamination patterns on the left side are more difficult to be detected. Five out of six
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cases are off by three layers because of the effect by the left side boundary, as shown in 

Table 14. Similarly, Table 16 shows that the best predictions on the left side are less 

precise than the right side.

TABLE 14. Mean and Best Predicted for Small Size Delamination Patterns at Layer 0

Case
Actual 

Delamination Patterns
\_zd' xj  ’ y<i > ax >ay J actual

Mean Predicted 
Delamination Patterns
[zd,xil>yd,ax,ay\m̂

Best Predicted 
Delamination Patterns

lzd’x<i>yd>aX’aJ best
1 [0,3.56, 1.33, 0.89, 1.33] [2.0,6.13,1.73,0.75,0.98] [■,3.59, 1.60, 0.66, 1.30]
2 [0,3.56,0.89, 0.89, 2.22] [1.4,4.66, 1.13,2.16, 1.41] [0,3.53, 1.48, 1.04, 1.25]
3 [0,3.56, 0.44,0.89,3.11] [1.7,3.40,0.60,1.93,2.20] [|||, 3.64, 0.12, 0.66, 3.79]
4 [0,3.11, 1.33, 1.78, 1.33] [1.2, 4.98,1.08,2.02, 1.72] [1,3.23, 1.06, 1.71, 1.43]
5 [0,3.11,0.89, 1.78, 2.22] [1.1,4.51, 1.18,4.94, 1.73] 1,3.16,0.80, 1.80,2.32]
6 [0,3.11,0.44, 1.78,3.11] [1.1, 3.30,0.38, 4.59,2.22] [0,3.26, 0.54, 1.67,3.35]

7 [0,0.44,1.33, 0.89, 1.33] [3.0, 1.47, 1.14, 1.64, 0.78] [3, 0.36, 1.26, 0.81, 1.29]
8 [0,0.44,0.89, 0.89, 2.22] [3.0, 0.09, 1.21, 1.86, 1.64] [3,0.08,0.52, 1.07,2.26]
9 [0, 0.44, 0.44, 0.89,3.11] [3.0,0.47, 1.74,3.00, 1.67] [3, 0.34, 1.07, 1.19,3.14]
10 [0,0.44,1.33,1.33,1.33] [2.8,0.07,1.04,2.25,1.30] [3,0.06,1.31,1.36, 1.38]
11 [0, 0.44, 0.89, 1.33, 2.22] [2.7, 0.90, 0.88,3.21,2.06] [3, 0.15,0.94,2.95, 2.11]
12 [0, 0.44,0.44, 1.33,3.11] [2.3, 0.80, 0.69, 2.24, 3.09] [0, 0.47, 0.63, 1.26,2.98]

13 [0, 6.67, 1.33, 0.89, 1.33] [1.6,5.64, 1.42, 1.13, 1.60] [0,5.98, 1.44,0.93,1.16]
14 [0, 6.67,0.89, 0.89, 2.22] [1.4,5.51, 1.29, 1.52, 1.78] [1,6.12, 0.68,0.92, 2.51]
15 [0,6.67,0.44,0.89,3.11] [1.6,5.87, 1.78, 1.27,2.97] [0,6.70,0.51,0.76,3.31]
16 [0,6.22, 1.33, 1.33, 1.33] [1.2,5.80, 1.13, 1.29,2.05] [0, 5.49,1.32,1.66,1.11]
17 [0, 6.22, 0.89, 1.33, 2.22] [1.0, 5.78, 1.01, 1.68, 1.98] [0, 5.93, 0.92, 1.43, 2.07]
18 [0, 6.22, 0.44, 1.33,3.11] [0.4, 6.60, 0.65, 1.47,3.19] [0, 6.51,0.25, 1.08,3.37]
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TABLE 15. Detection Errors for Small Size Delamination Patterns at Layer 0

Case

Finite
Element
Pattern

Size

Actual
Ply

Location
<7actual

Mean
Predicted

Ply
Location

Anean

Best
Predicted

Ply
Location

■̂best

Mean
RRMSE

Best
RRMSE

Elapsed
Time

(seconds)

1 2x3 0 2.0 2 0.00168 0.00152 1944.06
2 2x5 0 1.4 0 0.00224 0.00186 1873.40
3 2x7 0 1.7 1 0.00242 0.00125 1812.77
4 4x3 0 1.2 1 0.00587 0.00368 1761.47
5 4x5 0 1.1 1 0.01382 0.00668 1707.13
6 4x7 0 1.1 0 0.01412 0.00392 1844.51

7 2x3 0 3.0 3 0.00424 0.00417 1724.05
8 2x5 0 3.0 3 0.00407 0.00402 1601.38
9 2x7 0 3.0 3 0.00438 0.00386 1796.30
10 3x3 0 2.8 3 0.00355 0.00318 1598.47
11 3x5 0 2.7 3 0.00428 0.00399 1681.72
12 3x7 0 2.3 0 0.00536 0.00303 1618.74

13 2x3 0 1.6 0 0.00188 0.00193 1764.89
14 2x5 0 1.4 1 0.00205 0.00257 1729.65
15 2x7 0 1.6 0 0.00288 0.00281 1764.54
16 3x3 0 1.2 0 0.00340 0.00249 1771.05
17 3x5 0 1.0 0 0.00477 0.00345 1780.97
18 3x7 0 0.4 0 0.00535 0.00475 1643.62
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TABLE 16. Mean and Best Predicted for Small Size Delamination Patterns at Layer 3

Case
Actual 

Delamination Patterns
[zd,x(„ y d,ax,ay

Mean Predicted 
Delamination Patterns
[zd,xd,yd,ax,ay\mcm

Best Predicted 
Delamination Patterns
\z d,xd,yd,ax,ay\htsx

1 [3,3.56,1.33, 0.89, 1.33] [1.4,3.01, 1.39,3.37,0.48] [3, 5.39,0.84,2.87, 0.48]
2 [3,3.56,0.89, 0.89,2.22] [1.4,3.01, 1.39,3.37, 0.48] [3, 5.39, 0.84,2.87, 0.48]
3 [3,3.56,0.44, 0.89,3.11] [1.4,3.51, 1.21,3.42,0.48] [3, 5.39, 0.84, 2.87, 0.48]
4 [3,3.11, 1.33, 1.78, 1.33] [1.3,3.01, 1.45,3.21,0.48] [3, 5.39, 0.84, 2.87, 0.48]
5 [3,3.11,0.89,1.78,2.22] [2.6, 0.83, 0.70, 1.57, 1.47] [3, 2.72, 1.07, 2.40, 0.93]
6 [3,3.11,0.44, 1.78,3.11] [2.5, 2.30, 2.05, 1.30,3.30] [3,3.03,2.52, 1.64,3.15]

7 [3.0.44, 1.33,0.89, 1.33] [1.3,2.46, 1.23,3.40,0.47] [2, 0.79, 1.62, 3.61, 0.45]
8 [3, 0.44, 0.89, 0.89, 2.22] [1.5, 2.70, 0.99, 3.77, 0.47] [2, 0.79,1.62,3.61,0.45]
9 [3, 0.44, 0.44, 0.89,3.11] [1.5, 2.58,0.87,3.97, 0.48] [2, 0.40,1.27,3.18, 0.50]
10 [3,0.44, 1.33, 1.33, 1.33] [1.5, 2.70, 0.99,3.77,0.47] [2, 0.40,1.27, 3.18, 0.50]
11 [3,0.44, 0.89, 1.33,2.22] [3.0, 0.50, 1.32,0.87, 0.81] [3, 0.38, 0.99, 0.65, 1.34]
12 [3,0.44, 0.44, 1.33,3.11] [3.0, 0.38,2.79, 1.12, 1.76] [3, 0.65, 1.56,0.90,2.71]

13 [3, 6.67, 1.33, 0.89, 1.33] [1.8, 6.16,1.79, 1.25, 0.48] [3,7.22, 1.23, 0.85, 0.51]
14 [3, 6.67,0.89,0.89, 2.22] [1.7, 6.16, 1.79, 1.24,0.48] [3,7.22, 1.23,0.85, 0.51]
15 [3,6.67,0.44, 0.89,3.11] [1.7, 6.16, 1.79, 1.24, 0.48] [j§, 6.40, 0.51, 1.20, 0.49]
16 [3,6.22, 1.33,1.33, 1.33] [1.8,5.96, 1.55, 1.28,0.48] [3,4.00, 1.09, 1.63, 0.48]
17 [3, 6.22, 0.89, 1.33, 2.22] [1.8, 6.16, 1.78, 1.25, 0.48] [.I, 7.25, 1.16, 0.94, 0.46]
18 [3,6.22, 0.44, 1.33,3.11] [1.8,5.84, 1.77, 1.31,0.49] [0, 6.40, 0.51, 1.20, 0.49]
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TABLE 17. Detection Errors for Small Size Delamination Patterns at Layer 3

Case

Finite
Element
Pattern

Size

Actual
Ply

Location
2actual

Mean
Predicted

Ply
Location

m̂ean

Best
Predicted

Ply
Location

■̂best

Mean
RRMSE

Best
RRMSE

Elapsed
Time

(seconds)

1 2x3 3 1.4 3 0.00337 0.00337 1706.55
2 2x5 3 1.4 3 0.00324 0.00324 1626.47
3 2x7 3 1.4 3 0.00312 0.00312 1786.53
4 4x3 3 1.3 3 0.00331 0.00331 1701.79
5 4x5 3 2.6 3 0.00367 0.00336 1702.90
6 4x7 3 2.5 3 0.00420 0.00396 1694.42

7 2x3 3 1.3 2 0.00424 0.00417 1724.05
8 2x5 3 1.5 2 0.00407 0.00402 1601.38
9 2x7 3 1.5 2 0.00438 0.00386 1796.30
10 3x3 3 1.5 2 0.00355 0.00318 1598.47
11 3x5 3 3.0 3 0.00428 0.00399 1681.72
12 3x7 3 3.0 3 0.00536 0.00303 1619.74

13 2x3 3 1.8 3 0.00327 0.00327 1707.88
14 2x5 3 1.7 3 0.00313 0.00313 1678.20
15 2x7 3 1.7 0 0.00305 0.00305 1692.44
16 3x3 3 1.8 3 0.00298 0.00298 1674.17
17 3x5 3 1.8 2 0.00300 0.00300 1734.19
18 3x7 3 1.8 0 0.00347 0.00347 1732.11
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In Table 18, fifteen larger sized delamination patterns (less than 35% of the plate area) 

are considered and to be detected. Cases 1 to 5 are at the center of the plate, cases 6 to 10 

are at the left-center, and cases 11 to 15 are at the right-center. It is observed that the 

detections are much easier detected. As the best predicted delamination patterns in Table 

18 shows, only case 15 is off by one layer; all other cases are satisfactory.

TABLE 18. Mean and Best Predicted for Larger Sized Delamination Patterns at Layer 0

Case
Actual 

Delamination Patterns
[zd,xd,yil,ax,ayJactua,

Mean Predicted 
Delamination Patterns

[z</ > xd > y j ' ax, ay ]mean

Best Predicted 
Delamination Patterns

[zd,xd,yd,ax,a},\best

1 [0, 2.67, 0.89, 2.67, 2.22] [0.7,3.46, 0.82,3.69,2.15] [0,2.31,0.67, 2.53, 2.27]
2 [0, 2.67, 0.44,2.67,3.11] [1.0,3.58, 0.98,4.86, 2.91] [0, 3.26, 0.26, 2.26, 3.42]
3 [0,2.22, 0.89, 3.56, 2.22] [0.9, 3.39, 0.92, 4.36, 2.54] [0,2.13,0.91,3.40, 2.25]
4 [0,2.22, 0.44,3.56,3.11] [0.2,4.30,1.89,4.93,3.67] [0, 2.56, 0.53, 3.36, 3.33]
5 [0, 1.78, 1.33, 4.44, 1.33] [0.5,3.55, 1.19,3.67, 1.61] [0, 1.34, 1.39, 3.52, 1.45]
6 [0, 0.44, 0.44,2.22,3.11] [1.4,2.06,2.11,3.34,3.48] [0,0.57, 0.54, 2.12,3.07]
7 [0, 0.44, 0.89, 2.67, 2.22] [0.6, 0.81, 1.03,3.02,2.06] [0, 0.53,0.95,2.69,2.18]
8 [0, 0.44, 0.44, 2.67, 3.11] [1.2, 0.46, 1.25, 3.55,2.95] [0, 0.54, 0.31,2.52,3.30]
9 [0,0.44, 0.89,3.11,2.22] [0.6, 1.05, 0.90,3.29,2.36] [0, 0.47, 1.07, 3.44, 1.83]
10 [0, 0.44, 0.44,3.11,3.11] [1.1,0.52, 0.87,3.69,3.42] [0, 0.45, 0.29, 2.95, 3.29]
11 [0, 5.33, 0.89, 2.22,2.22] [1.6,5.58, 0.96,3.86, 2.12] [0,5.35, 0.70, 2.12,2.25]
12 [0, 5.33, 0.44, 2.22,3.11] [1.5, 5.65, 0.71,4.19, 2.88] [0,5.24, 0.14, 1.86,!3.71]
13 [0,4.89, 0.89, 2.67, 2.22] [0.3, 5.34, 1.13,3.98, 1.93] [0,5.03, 1.26, 2.88, 2.11]
14 [0,4.44, 0.89,3.11,2.22] [0.5,4.94, 0.94,3.74,2.16] [0,3.98, 0.95,3.28, 2.12]
15 [0,4.44, 0.44,3.11,3.11] [0.5, 5.83, 1.40, 4.57,3.28] ( ,  4.27, 0.59, 3.84, 2.67]
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TABLE 19. Detection Errors for Larger Sized Delamination Patterns at Layer 0

Case

Finite
Element
Pattern

Size

Actual
Ply

Location
âctual

Mean
Predicted

Ply
Location

^mean

Best
Predicted

Ply
Location

■̂best

Mean
RRMSE

Best
RRMSE

Elapsed
Time

(seconds)

1 6x5 0 0.7 0 0.01380 0.00699 1812.00
2 6x7 0 1.0 0 0.01893 0.00753 1768.68
3 8x5 0 0.9 0 0.01703 0.00642 1672.56
4 8x7 0 0.2 0 0.02075 0.00711 1736.58
5 10x3 0 0.5 0 0.00782 0.00689 1687.55
6 5x7 0 14 0 0.01874 0.00344 1599.95
7 6x5 0 0.6 0 0.00836 0.00363 1602.28
8 6x7 0 1.2 0 0.01523 0.00445 1699.36
9 7x5 0 0.6 0 0.01352 0.00968 1667.78
10 7x7 0 1.1 0 0.01572 0.00421 1599.80
11 5x5 0 1 6 0 0.00822 0.00500 1790.31
12 5x7 0 1.5 0 0.01458 0.01374 1615.54
13 6x5 0 0.3 0 0.00693 0.00457 1686.71
14 7x5 0 0.5 0 0.01177 0.00952 1604.16
15 7x7 0 0.5 1 0.01890 0.01189 1750.52

Comprehensive Case Studies

In Tables 20 and 21, twenty-seven delamination patterns of mesh size 18x9 were 

used to observe the effects of density of training data sets of mesh size 20x10, as shown 

in Figures 14 and 15. The delamination patterns are divided into four groups. The first 

group consists of cases 1 to 7 with delamination size 4x3 and their locations are shown in 

Figures 16 and 17. The second group consists of cases 8 to 15 with delamination sizes of 

2x5 and 3x5 and their locations are shown in Figures 18 and 19. The third group consists 

of cases 16 to 23 with delamination size 3x6 and their locations are shown in Figures 20 

and 21. The fourth group consists of cases 24 to 27 with delamination sizes 6x3 and

10x3 and their locations are shown in Figures 22 and 23.
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TABLE 20. Mean and Best Predicted Delamination Patterns for Comprehensive Case 
Studies at Layer 0

Case
Actual 

Delamination Patterns
\_z <i > , y<i > a x , a y J actuai

Mean Predicted 
Delamination Patterns

\z d > x d > y j  > ax’ ay ]mean

Best Predicted 
Delamination Patterns

[^ d ^ d , y d , a x , a y \ ^ x

1 [0,3.11, 1.33, 1.78, 1.33] [1.2,4.98, 1.08,2.02, 1.72] [1,3.23, 1.06, 1.71, 1.43]
2 [0, 1.78, 1.33, 1.78, 1.33] [0.5,3.26, 1.50,4.16,0.99] [0, 1.82, 1.06, 1.75, 1.37]
3 [0, 4.44, 1.33, 1.78, 1.33] [0.5, 4.68, 1.11, 1.89, 1.37] [0,4.56, 1.06, 1.72, 1.37]
4 [0,0.89, 1.33, 1.78, 1.33] [1.8, 2.16, 1.39,4.64,1.16] [2,2.52, 0.97, 1.44, 1.44]
5 [0, 5.33, 1.33, 1.78, 1.33] [1.8,5.56, 1.25, 1.47, 1.92] [2,5.10, 1.31, 1.71, 1.44]
6 [0,0.44, 1.33, 1.78, 1.33] [2.0, 0.69, 0.84,2.63, 1.86] [0, 0.40,1.36, 1.68, 1.13]
7 [0, 5.78, 1.33, 1.78, 1.33] [1.6, 5.75, 1.28, 1.68, 1.85] [0, 5.97, 1.32, 1.32, 1.71]

8 [0, 1.78, 0.89, 0.89, 2.22] [1.2, 1.71, 1.29, 1.55, 1.24] [1, 1.97,0.95, 0.76, 1.87]
9 [0, 5.33,0.89, 0.89,2.22] [2.0,5.29, 1.48,0.83,2.49] [|5.27, 1.15,0.75,2.25]
10 [0, 1.78, 0.89, 1.33, 2.22] [0.3,2.30, 1.27,3.09, 1.44] [0, 1.90,0.64, 1.24,2.27]
11 [0,4.89,0.89, 1.33,2.22] [0.7,4.50, 1.05, 1.56,2.08] [0,4.76, 0.61, 1.23,2.53]
12 [0, 0.89, 0.89, 1.33, 2.22] [1.1, 1.37, 0.88, 1.69, 2.88] [0, 1.13,0.62,1.07,2.68]
13 [0, 5.78, 0.89, 1.33, 2.22] [1.9,5.69, 0.95, 1.43,2.41] [1,5.66, 1.02, 1.43,2.07]
14 [0, 0.44,0.89, 1.33, 2.22] [2.7, 0.90, 0.88,3.21, 2.06] [3,0.15,0.94, 2.95,2.11]
15 [0, 6.22,0.89, 1.33, 2.22] [1.0,5.78, 1.01, 1.68, 1.98] [0,5.96, 0.68, 1.32, 2.28]

16 [0, 0.89, 0.44, 1.33,2.67] [1.3, 0.83, 0.42,3.09, 1.98] [2, 0.56, 0.30, 1.49, 2.64]
17 [0,5.78,0.44, 1.33,2.67] [1.5, 5.74, 0.88, 1.40,3.13] [0,5.84,0.48, 1.20, 2.72]
18 [0, 0.44, 0.44, 1.33,2.67] [3.0, 1.65, 0.68,3.54,2.09] [3, 0.07, 0.51,2.97, 2.56]
19 [0, 6.22,0.44, 1.33,2.67] [0.9, 6.05, 1.01, 1.69, 2.75] [0, 6.20, 0.55, 1.26, 2.61]
20 [0,0.89, 0.89, 1.33,2.67] [0.8,0.95, 1.65, 1.34,3.05] [1, 0.99, 0.99, 1.24, 2.65]
21 [0,5.78,0.89, 1.33,2.67] [2.0, 5.59, 1.20, 1.50, 2.87] [2,5.41,1.01,1.53,2.82]
22 [0, 0.44,0.89, 1.33, 2.67] [1.8, 1.27, 1.30,2.31,2.78] [1,0.51,0.61, 1.08,3.45]
23 [0, 6.22, 0.89,1.33,2.67] [1.0, 6.11, 1.34, 1.62, 2.59] [0, 6.04, 0.94, 1.34, 2.94]

24 [0,2.67, 1.33,2.67, 1.33] [0.9,5.53, 1.03,2.89, 1.69] [1,2.88,1.24,2.47,1.43]
25 [0, 0.44, 1.33, 2.67, 1.33] [0.9, 1.80, 1.20,2.94, 1.44] [0,0.93, 1.40, 3.48, 1.02]
26 [0,4.89, 1.33,2.67, 1.33] [0.5,6.87, 1.24,2.40, 1.63] [0, 5.48, 1.48, 3.05, 1.12]
27 [0,1.78, 1.33,4.44, 1.33] [0.5, 1.19, 1.19,3.67, 1.61] [0, 1.34, 1.39,3.52, 1.45]
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TABLE 21. Detection Errors for Comprehensive Case Studies at Layer 0

Case

Finite
Element
Pattern

Size

Actual
Ply

Location

^actual

Mean
Predicted

Ply
Location

■‘'mean

Best
Predicted

Ply
Location

^best

Mean
RRMSE

Best
RRMSE

Elapsed
Time

(seconds)

1 4x3 0 1.2 1 0.00587 0.00368 1761.47

2 4x3 0 0.5 0 0.00568 0.00318 1817.65

3 4x3 0 0.5 0 0.00491 0.00403 1697.61

4 4x3 0 1.8 2 0.00270 0.00241 1648.38

5 4x3 0 1.8 2 0.00391 0.00308 1715.46

6 4x3 0 2.0 0 0.00388 0.00181 1700.85

7 4x3 0 1.6 0 0.00411 0.00286 1790.61

8 2x5 0 1.2 1 0.00139 0.00108 1666.12

9 2x5 0 2.0 2 0.00377 0.00372 1667.98

10 3x5 0 0.3 0 0.00637 0.00416 1688.77

11 3x5 0 0.7 0 0.00625 0.00552 1660.46

12 3x5 0 1.1 0 0.00288 0.00170 1794.51

13 3x5 0 1.9 1 0.00443 0.00366 1710.63

14 3x5 0 2.7 3 0.00428 0.00399 1681.72

15 3x5 0 1.0 0 0.00477 0.00375 1780.97

16 3x6 0 1.3 2 0.00458 0.00388 1624.77

17 3x6 0 1.5 0 0.00458 0.00338 1670.09

18 3x6 0 3.0 3 0.00525 0.00400 1674.26

19 3x6 0 0.9 0 0.00505 0.00350 1641.00

20 3x6 0 0.8 1 0.00315 0.00261 1714.49

21 3x6 0 2.0 2 0.00435 0.00378 1610.03

22 3x6 0 1.8 1 0.00573 0.00269 1851.59

23 3x6 0 1.0 0 0.00551 0.00391 1687.05

24 6x3 0 0.9 1 0.00705 0.00406 1590.10

25 6x3 0 0.9 0 0.00479 0.00305 1601.86

26 6x3 0 0.5 0 0.00374 0.00463 1621.15

27 10x3 0 0.5 0 0.00782 0.00689 1687.55
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FIGURE 20. Delamination patterns location of cases 16, 17,18, and 19 (group 3).
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In this comprehensive case study, the delamination patterns w ill shift between each 

group from one location to another, such as center to left, center to right, upper-left, 

lower-left, upper-right, or lower-right. When the delamination patterns relocate, it lands 

into a region of different density of training data sets. Besides the effect o f density of 

data sets on the detection of the delamination, the effects of size on delamination, its 

locations, and boundary conditions are also discussed. Below are the observations of the 

effects on the detection when the delamination patterns are relocated:

C l - As shown in Figure 16, a delamination size 4x3 (7% of the plate area) fully 

covers the 20% region, a region of low density of data sets. C l locates at the central area 

of the plate where there is no boundary conditions effect. The prediction of C l is off by 

one layer, while xd, yd, ax, and ayare satisfactory.

C2, C3 - As shown in Figure 17, C l shifts three elements to the left and right, 

respectively. Each covers a small portion of the 20% region, one-third of the 60% region, 

and the rest of the 40% region. Since both C2 and C3 fall inside a 60% region, boundary 

conditions are thus not totally in effect. With changes in densities o f data sets, the 

detections are much better than detection of C l and are all satisfactory.

C4, C5 - As shown in Figure 16, C2 and C3 shift two elements to the left and right, 

respectively. Each covers mainly the 60% and 80% regions, which are not the favored 

regions of prediction. With both barely falling inside the 80% region, this may induce 

slight boundary effects. The predictions are o ff by two layers for both cases. C4 with xd

is totally off, yd and axare slightly off. C5 with xd,yd, ax, and ay are satisfactory.

C6, C7 - As shown in Figure 17, C4 and C5 shift one element to the left and right,
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respectively. Each covers one-third of the 60% region, one-fifth of the 100% region, and 

the rest o f the 80% region. Both fall outside of the 80% region. Since the short edge o f 

delamination is parallel to the left boundary, this may reduce the boundary conditions 

effect. With changes in densities of data sets, the detection should be better than 

detection of C4 and C5. For the prediction of C7, ax and ay are slightly off.

C8, C9 - As shown in Figure 18, each delamination size 2x5 (6% of the plate area) 

covers a small portion of the 40% region and the rest o f the 60% region. Both fall inside 

the 60% region and thus boundary conditions are not totally in effect. With size effect 

(less than 7% of the plate area), the prediction of C8 is o ff by one layer while C9 is o ff by 

two layers. C8 with ay is slightly off.

CIO, C l 1 - As shown in Figure 19, C8 and C9 enlarge the size from 2x5 to 3x5 (6%  

to 9% of the plate area). With the size effect, the predictions are much improved and are 

all satisfactory.

C 12, C 13 - As shown in Figure 19, CIO and C l 1 shift two elements to the left and 

right, respectively. Each covers a half of the 60% region and a half o f the 80% region, 

which are not the favored regions of prediction. With both barely falling inside the 80% 

region, this may induce slight boundary conditions effect. For the predictions of C l2, ay

is slightly off. The prediction of C l 3 is off by one layer.

C l4, C l5 - As shown in Figure 18, C12 and C13 shift one element to the left and 

right, respectively. Each covers a small portion of the 60% region, one-fourth of the 100% 

region, and the rest o f the 80% region. Both fall outside the 80% region. Since the long 

edge of delamination is parallel to the left boundary, this w ill increase the boundary
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conditions effect. The prediction of C l 4 is off by three layers, xd is slightly off, ax is

totally off; C l5 is satisfactory.

C l 6, C17 - As shown in Figure 20, each covers two-fifth of the 60% region and the 

rest of the 80% region, which are not the favored regions of prediction. With both barely 

falling inside the 80% region, this may increase the boundary conditions effect. The 

prediction of C l 6 is off by two layers and xdis slightly off. The prediction of C l 7 is 

satisfactory.

C l8, C19 - As shown in Figure 20, C16 and C l7 shift one element to the left and 

right, respectively. Each covers one-third of the 100% region and most of the 80% 

region. Both fall outside the 80% region and thus boundary conditions are totally in 

effect. With both lower and left boundary effects, the detection should be more difficult 

than detection of C l 6 and C l 7. The prediction of C l 8 is off by three layers, xd is slightly

off, andax is totally off. The prediction of C19 is satisfactory.

C20, C21 - As shown in Figure 21, C16 and C l7 shift one element up and further 

away from the lower boundary. Each covers two-fifth of the 60% and the rest of the 80% 

regions, which are not the favored regions of prediction. Both barely fall inside the 80% 

region and the long edge of delamination is parallel to the left boundary. These may 

increase the boundary conditions effect. The prediction of C20 is o ff by one layer, while 

xd,yd, aK, and ay are satisfactory. The prediction of C21 is off by two layers, and xd is 

slightly off.

C22, C23 - As shown in Figure 21, C l8 and C19 shift one element up and further 

away from the lower boundary, and cover the same regions of density of data sets. This
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shifting further reduces the lower boundary effect. Thus, the detection of C22 and C23 

must be easier than detection of C l 8 and C l 9. The prediction of C22 is off by one layer 

anday is totally off. The prediction of C23 is satisfactory.

C24 - As shown in Figure 22, the size of C l is enlarged from 4x3 to 6x3 (7% tol 1% 

of the plate area). It folly covers the 20% region, and most of the 40% region, which are 

regions of low density of data sets. Since it falls inside the 40% region and locates at the 

central area of the plate, there is no boundary conditions effect. The preciseness o f 

detection of C24 is similar to C l. With the density of data sets effect, the prediction of 

C24 is off by one layer, while xd, yd, ax,and ay are satisfactory.

C25, C26 - As shown in Figure 22, C24 shifts five elements to left and right, 

respectively. Each covers three-tenth of 40%, 60%, 80% and one-tenth of 100% regions. 

Both fall outside the 80% region. Since the short edge of delamination is parallel to the 

left boundary, this further reduces the boundary conditions effect. The predictions are 

not very precise for both. C25 with xd is slightly off and ax is totally off. C26 with xd is

totally off andax is slightly off.

C27 - As shown in Figure 23, the size of C24 is enlarged from 6x3 to 10x3 (11% to 

19% of the plate area). It fully covers the 20% region, the majority of the 40% region, 

and some of the 60% region, which are regions of low density of data sets. Since it falls 

inside the 60% region and locates at the central area of the plate, there is no boundary 

conditions effect. With the size effect (greater than 17% of the plate area), the prediction 

of C27 must be easier than prediction of C24, where xd is slightly o ff and ax is totally off.

125



www.manaraa.com

CHAPTER 8 

CONCLUSION

The most widely used method for damage assessment is to identify the occurrence, 

location, and extent of the damage from measured structural dynamic characteristics.

The presence of delamination decreases the natural frequency and causes changes to the 

mode shape of the composite laminate. This is due to the reduction of the stiffness 

caused by the delamination. In this paper, a methodology of combined techniques o f 

finite element analysis, counterpropagation neural networks, and genetic algorithms has 

been introduced and used to solve the delamination detection problem.

An improved-layerwise composite laminate theory is extended to model composite

laminates with delamination. This new layerwise finite element model is employed to

calculate natural frequencies of cross-ply laminates with given delamination patterns

placed at different locations. Therefore, the detection of delamination is first formulated

as a simulation and second as an optimization problem and solved by the approach

utilizing improved-counterpropagation neural networks and genetic algorithms,

respectively. Counterpropagation neural networks are trained to simulate natural

frequencies from the finite element analysis. These artificial neural networks are chosen

as function approximations which are developed on the available input-output data from a

finite element model. Genetic algorithms with mixed type design variables are used to

search the optimum delamination patterns associated with the given natural frequencies.

Frequencies are used to formulate the objective function. The differences between the
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measured and computed frequencies are used to formulate the optimization problem that 

is solved efficiently by genetic algorithms.

A  technique has been developed to select the best set of parameters for 

counterpropagation neural network. The effects of using different validation data sets 

have found that the mesh size of validation data sets that are coupled with the mesh size 

of training data sets w ill affect the performance of the trained neural network, which is 

indicated by the value of overall relative mean error. Besides the effects of size on 

delamination, its location, and boundary conditions on the detection o f delamination in 

laminated composites, the density of training data sets also has significant effects on the 

precise detection of delamination. From many comprehensive case studies, these 

important observations have been made: at the central area of the plate, there is no 

boundary conditions effect. But that is the region of low density of data sets, which 

affects the preciseness of prediction. When the delamination patterns fall into the regions 

of 60% and 80%, which are not the favored regions of prediction, the detection becomes 

difficult to predict. When the delamination patterns fall outside the 80% region, then 

boundary conditions are totally in effect. The degree of effect also depends on the length 

(short or long edge) of delamination pattern that is parallel to the boundary. A  

delamination size less than 7% of the plate area is unable to be detected. Small sized 

delaminations (between 7% to 17% of the plate area) are difficult to detect. Larger sized 

delaminations (but less than 35% of the plate area) are much easier to detect.

Single internal delamination has been considered in the present studies and has been 

used to validate the methodology for delamination detection. It is found that internal 

delamination has been detected with remarkable accuracy using these combined
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techniques of finite element analysis, counterpropagation neural networks, and genetic 

algorithms.
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APPENDIX A  

FLOW CHART OF THESIS OVERVIEW
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APPENDIX B 

MATLAB CODES
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main program to ran
m a in .m

read input data 
sh in .m

transformed stiffness.matrices of layers

impose geometric boundary conditions 
i  gb c .m  i

Gauss integration rale 
G au ssln t.m

calculate coefficient of healthy element
d i s p t . m  h

calculate coefficient of delamination element
d i s p d . m

plot the mesh
sh co a f ig .m

formulate global stiffness & material matrix 
! assu m ed fn .m

formulate global stiffness & material matrix
assem b le .m

apply boundary condition

calculate natural frequency
^ e T g n T m ^ ^ l

formulate stiffness & material matrix 
of healthy element

d sh e lem .m

formulate stiffness & material matrix 
of delaminated element

d sh e lem  d.m

calculate mode shape 
e ig m o d e .m

calculate Gauss point
ga u ss .m

shape function
sh ap efn .m

formulate global stiffness & material matrix 
assu m ed fn .m

FIGURE 25. Flow chart of FEA MATLAB codes.
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main program to train CPNN

generate random training data set generate random integer

randpick.p

train CPNN routine

simulate output by CPNN

interpolation By Size

interpolation By Number

interpolationByNum.p

postprocess.p
validate CPNN by validation data

simulate output by CPNN

cpnsimulate.p

interpolation By Size

interpolation By Number

interpolationByNum.p

postprocess.p

validation.m

cpnsimulate.p

interpolationBySize.p

main.m

transform.p

interpolationBySize.p

randint.p

preprocess.p

transform.p

FIGURE 26. Flow chart of CPNN MATLAB codes.
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genetic algorithm  main program

— —  ̂ gacpn_Int.m j

1 genetic algorithm main program
L~ g a c p n . m  j

run genetic algorithm for minimization problems 
\ geamin.p i

j generate initial population fitness (evaluation) function
p——H creationPop.p evalSID.m

| GA operations
—  geaOps.p

reproduction (selection) function 

—) selectTournament.p j

I crossover function
xOverOnePt.p !

|
j mutation function

—  mutationUnif.p |
■

| termination function
— t termMaxGen.p j

simulate output by CPNN 
•j cpnsimulate.p j

transform.p
I
j interpolation by size

interpolationBySize.p

interpolation by number
-— . interpolationByNum.p

postprocess.p

FIGURE 27. Flow chart of GA MATLAB codes.
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% FILENAM E: mainTran.m
%
%
% FINITE ELEMENT ANALYSIS
% Solve: Single Internal Delamination Detection Problem (SID)
% Solve: Single Through-the-Width Delamination Detection Problem (STW D) 
% * Theory
% - Layerwise Shell Theory
% DOUBLY CURVED ELEMENT, Cross-ply laminates only
% * Shape function
% - 4-noded quadratic shape function
%
% PROGRAMMER : Heung Soo Kim  
% Arizona State University 
% DATE : 0 2 /1 4 /2 0 0 2
%
% M ODIFIED BY : Tran Ngoc Phuong 
% Mechanical and Aerospace Engineering Department, CSULB 
% DATE : 0 2 /0 9 /2 0 0 6
%
% --------------------------------------------------------------------------------------------------

% -----------------------------------------------------------------------
% OPEN TEXT FILE AND DATA FILE
% ------------------------------------------------------------------------------
clear all 
close all
ti = cputime; % initial time

fid = fopen ('fptffeq20xl0_SID8x4_l00pc_z0123.txt', ’a+'); 
dataFN = 'fptfreq20xl0_SID8x4_100pc_z0123.maf; 
delete(dataFN)

% ------------------------------------
% USER DIRECT INPUT
% -----------------------------------
delcase = 2 
gbccase = 2; 
delpercent =20; 
zdLL = 0; zdUL = 0;
Lo = 0; Lx = 0.1; Ly = 0.1; 
xMesh = 20; yMesh =10; 
modeN =10; 
npe = 4; 
vpn = 7;

% 1 = healthy laminate, 2 = delaminated laminate 
% 1 = STWD, 2 = SID 
% percentage o f delamination 
% zdLL = zd Lower Limit, zdUL = zd Upper Limit 
% lower left comer (Lo), length (Lx), width (Ly) (meter) 
% mesh-size : (xMesh) x (yMesh)
% number of mode 
% number of nodes per element 
% number of variables per node 
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% ----------------------------------------------------------------------------------------------------------------------------
% POINTS, NODES AND ELEMENTS INFORMATIONS
% ----------------------------------------------------------------------------------------------------------------
%
% Coordinates of each comer point
PA = Lo; PD = Lx; PE = Ly; % plate dimension (m)
xeps = xMesh; y_eps = yMesh; % mesh-size

% Node and element
x nps = x_eps+l; % xnps : nodes Per X  Sides, x eps : elements Per X  Sides
y nps = y_eps+l; % y_nps : nodes Per Y  Sides, y_eps : elements Per Y  Sides
nnod = x_nps*y_nps; % nnod : number of nodes
nelm = x_eps*y_eps; % nelm : number of elements

% ----------------------------------------------------------------------------------------------------------------------------
% LA M IN A  MATERIAL PROPERTIES AND STACKING SEQUENCE
% ----------------------------------------------------------------------------------------------------------------------------
%
% Material properties of composite
E l = 134.4e9; E2 = 10.34e9; % Young’s modulus, E3 = 16.6e9
G12 = 5e9; G13 = G12; G23 = G12; % Shear modulus
nul2 = 0.33; nul3 = nul2; nu21 = E2/E l*nul2; % nu23 = 0.42
rho = 1477; % density (kg/mA3)
tply = 1.27e-4; % lamina thickness (meter)

% Layup configurations
%
nlam = 8;
ang -  [0 90 0 90 90 0 90 0]; 
h = tply*nlam;
zt = h/nlam*[-nlam/2 : nlam/2]; 
zm = (zt(2 : end) + zt(l : end-l))/2;

% ----------------------------------------
% LIM ITS OF FOR-LOOPS
% ----------------------------------------------
%
delstart = (100 - delpercent) /  (2* 100); % delstart: delamination starting

x lL  = delstart*x_eps; x lU  = x eps - x lL  -1 ; x2U = xlU +1;

if  gbccase =  1 % STWD
y lL  = 0; y lU  = 0; y2U = y_eps; 

elseif gbccase =  2 % SID
y lL  = delstart*y_eps; y lU  = y_eps - y lL  -1 ; y2U = ylU +1;

end

% number of layers 
% orientation of layers 
% laminate thickness 
% thickness distribution of layers
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% -------------------------------------------------------------------------------------------------------
% FOR-LOOPS OF DELAM INATION
%
% zd : thickness location of delamination 
% 0 -  delamination at midplane
% 1 -  delamination at first layer above midplane
% 2 -  delamination at second layer above midplane
% 3 -  delamination at third layer above midplane
% ------------------------------------------------------------------------------------------------------------------------
zdL = zdLL; zdU = zdUL; % Lower Limit and Upper Limit o f zd
for zd = zdL : zdU % zd: thickness location of delamination (0 :3 )

for x l = x lL  : x lU  
for y l = y lL  : y lU  

for x2 = xl+1 : x2U

if  gbccase =  1 
y2L = y_eps; 

elseif gbccase == 2 
y2L = yl+1; 

end

for y2 = y2L : y2U 
tic

% x l: starting point o f delamination (x-axis) 
% y l: starting point o f delamination (y-axis) 
% x2: ending point of delamination (x-axis)

% 1: through-the-width delamination

% 2: internal delamination

% y2: ending point of delamination (y-axis)

%
%
%
%
%
%
% ------------
shinTran
Qg
gbc
Gausslnt 
dispt 
dispd  
% shcoafig

READ FILES 
shinTran
Qg
gbc
Gausslnt

disp t
dispd
shcoafig
assemble

exboun
eign
eigmode

% Input data content
% Transformed stiffness matrices of layers 
% Impose geometric boundary conditions 
% Gauss integration rule 
% Calculate the coefficient of healthy element 
% Calculate the coefficent of delamination element 
% Coordinate x,y,z and Figure

% --------------------------------------------------------------------------------------
% FORMULATE STIFFNESS AND M ATERIAL M A TR IX
%
% assemble: Formulate Global Stiffness and Material Matrix 
% GM : Global Mass Matrix
% GK : Global Stiffness Matrix

138



www.manaraa.com

%
% dshelem : Formulate stiffness and material matrix of healthy
% element
% dshelem d : Formulate stiffness and material matrix of
% delaminated element
%
% gauss : Calculate Gauss point
% shapefn : Shape function
o/ 0 --------------------------------------------------------------------------------------------------------
DELU = zeros (vpn*nnod,l);
assemble % Formulate Global Stiffness and Material Matrix
exboun % Boundary Condition Apply

% --------------------------------------------------------------------------------------------------------
% SOLVE THE SYSTEM OF EIGENVECTORS AND EIGENVALUES
%
% eign : solve the generalized Eigenvalue problem, order and
% normalize the Eigenvectors
% [Lambda,Phi,Psi] = eign(A,B)
% A x = [Lambda] B x
%
% eigmode : calculate the mode shape 
% modeshape = eigvec(:, mm)
% eigvec: eigenvector
% eigval: eigenvalue
o/o ---------------------------------------------------------
save tempi GK GM nnod NODEINDEX elemin nodin nodetype nelm 
load tempi

[eigval, eigvec] = eign(GK,GM); 
nmode = modeN; % number of mode
eigvec = eig_vec(:, 1: nmode); 
eigval = eig_val(l :nmode); 
nopn = 0;
omega = sqrt(eigval)/2/pi;
target = omega; % natural frequency
% eigmode % mode shape

0/0 ----------------------------------------------------------------------------------------------------
% PRINTOUT THE RESULTS AND SAVE FILE
O/ 0 --------------------------------------------------------------------------------------------------

%
% Printout the results 
i f  delcase == 1

fprintf('\nhealthy laminate with deltype = %2.0f\n',gbccase) 
target
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return 
elseif delcase —  2 

i f  gbccase =  1
fprintf(fid,'%4.0f % 7.4f %7.4f % 12.4f % 12.4f % 12.4f %12.4f % 12 .4 f 
%l2.4f %12.4f %12.4f % 12.4f %12.4f \n',zd,x l_r,ax_r,target’); 
delamination_pattem = [zd,xl,x2]' 

elseif gbccase == 2
fprintf(fid,'%4.0f % 7.4f %7.4f % 7.4f % 7.4f % 12.4f % 12.4f % 12.4f 
%12.4f %12.4f %12.4f %12.4f %12.4f % 12.4f % 12.4f 
zd,x 1 _r,y 1 _r,ax_r,ay_r,target'); 
delamination_pattem = [zd,xl,yl,x2,y2]' 

end 
end

ann_pin = pin % ann: artificial neural network
ann_target = target

% Save data file 
%
if  exist(dataFN,'file') =  2 % if  exist([dataFN '.mat'],'file') =  2

pt = load(dataFN); 
pin = [pt.pin,pin]; 
target = [pttarget,target]; 

end
save(dataFN,'pin','target')

toe
end

end
end

end
end

fclose(fid);

% ------------------------------------------------------------------------------
% COMPUTER ELAPSED TIM E
% ---------------------------------------------------------------------------
tf = cputime; % final time
dt = tf  - ti; % d t: total computer elapsed time
disp('')
fprintf('Total elapsed time is %g seconds.\n',dt)
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% FILEN AM E: shin_Tran.m
%
%
% FIN ITE ELEMENT ANALYSIS INPUT DATA  
% Solve: Single Internal Delamination Detection Problem (SID)
% Solve: Single Through-the-Width Delamination Detection Problem (STW D) 
%
%
% PROGRAMMER : Heung Soo Kim  
% Arizona State University
% DATE : 0 2 /1 4 /2 00 2
%
% MODIFIED BY : Tran Ngoc Phuong
% Mechanical and Aerospace Engineering Department, CSULB
% DATE : 0 2 /0 9 /2 0 0 6
%
%
% nnod : Number o f nodes
% nelm : Number of elements
% ndel : Number of delaminations
% a : Shell length
% delin : Delamination location
% delid : Delamination elements
% dnod : Number of delamination nodes
% nodetype : Node type (node in delamination or health element)
% bnodetype : Node type (node in the boundary of delamination el(
% zt : Thickness distribution of layers
% zd : Thickness location of delamination
%

o/ 0 ------------------------------------------------------------------------------
% SYLINDRICAL SHELL SURFACE GENERATION  
% Curvature R1 ,R2
o/o -------------------------------------------------------------------------------
%
% R1 = 1.0e+30; R2 = 1.0e+30;

0/0 ------------------------------------------
% NODE DATA
% nodin(:,l) : node number
% nodin(:,2) : x-coordinate
% nodin(:,3) : y-coordinate
% nodin(:,4): z-coordinate
0/0 ------------------------------------------
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nodin = zeros(nnod,4);
for i = 1 :nnod, nodin(i,l) = i;, end

for i = 1 : x nps 
for j = 1 : y_nps

nodin((i-l)*y_nps+j,2) = (i-l)*PD /(x_nps-l); 
nodin((i-l)*y_nps+j,3) = (j-l)*PE/(y_nps-l); 
nodin((i-l)*y_nps+j,4) = 0; 

end 
end

%  -------------------------------------------------------------------------------------------
% ELEMENT DATA
% elemin : ELEMent INput data [eid, nidi, nid2, nid3, nid4]
%  -------------------------------------------------------------------------------------------
elemin = zeros(nelm,5); 
fo ri= l:n e lm , elemin(i,l) = i;, end

for i = 1 :x_eps 
for j  = l:y_eps

elemin((i-l)*y_eps+j,2) = (i-l)*y_nps+j; 
elemin((i-l)*y_eps+j,3) = i*y_nps+j; 
elemin((i-l)*y_eps+j,4) = i*y_nps+j+l; 
elem in((i-l)!|!y_eps+j,5) = (i-l)*y_nps+j+l; 

end 
end

0/0 ------------------------------------------------------------------------------------------------------------------------
% DELAM INATION INFORMATION
%  -----------------------------------------------------------------------------------------------------------------------
ndel = 1; % 1 = single delamination, 2 = multiple delaminations
dvpn = 7+5*ndel; % degrees of freedom for delaminated node

if  delcase = 1  % 1 = healthy laminate, 2 = delaminated laminate
delid = zeros(nelm,l); 
dnod = 0;
nodetype = zeros(nnod,l); 
bnodetype = zeros(nnod,l); 
delin = zeros(l,nlam); 

elseif delcase —  2 % 1 = healthy laminate, 2 = delaminated laminate
delin = zeros(l,nlam); 
nmid = nlam/2; 
delin(nmid+zd) = 1; 
delin(nmid+zd+l:end) = 2;
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elementnum = xl*y_eps+l+yl; 
ax = x2-xl; 
ay = y2-yl;

% x length of delamination 
% y length of delamination

xl_r = xl*(PD/x_eps)* 100; % real x l coordinate
yl_r = y l *(PE/y_eps)*100; % real y l coordinate
ax_r = ax*(PD/x_eps)* 100; % real ax length
a y r  = ay * (PE/y_eps)* 100; % real ay length

if  gbccase =  1 % 1 = through-the-width delamination
pin -  []; 
p in (l,l) = zd; 
pin(2,l) = xl_r; 
pin(3,l) = ax_r;

delid = zeros(nelm,l); 
for i = 1 : ax

for j = xl*y_eps+l+yl+(i-l)*y_eps : xl*y_eps+y2+(i-l)*y_eps 
delid(j) = 1; 

end 
end

dnod = (ax+l)*(ay+l); 
nodetype = zeros(nnod,l); 
for i = 1 : ax+1

forj = xl*y_nps+l+yl+(i-l)*y_nps : x 1 *y_nps+1 +y2+(i-1 )*y_nps 
nodetype(j) = 1;

bnodetype = zeros(nnod,l);
for i = xl*y_nps+l+yl : xl*y_nps+l+y2, bnodetype(i) = 1; end

fori = xl*y_nps+l+yl+ax*y_nps : xl*y_nps+l+y2+ax*y_nps 
bnodetype(i) = 1; 

end

elseif gbccase = =2  % 2 = internal delamination
pin = []; 
p in (l, l)= zd; 
pin(2,l) = xl_r; 
pin(3,l) = yl_r; 
pin(4,l) = ax_r; 
pin(5,l) = a y r;

delid = zeros(nelm,l);

end
end
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for i = 1 : ax
for j = xl*y_eps+l+yl+(i-l)*y_eps : xl*y_eps+y2+(i-l)*y_eps 

delid(j) = 1; 
end 

end

dnod = (ax+l)*(ay+l); 
nodetype = zeros(nnod,l); 
for i = 1 : ax+1

for j = xl*y_nps+l+yl+(i-l)*y_nps : xl*y_nps+l+y2+(i-l)*y_nps 
nodetype(j) = 1; 

end 
end

bnodetype = zeros(nnod,l);
for i = xl*y_nps+l+yl : xl*y_nps+l+y2, bnodetype(i) = 1; end

for i = xl*y_nps+l+yl+ax*y_nps : xl*y_nps+l+y2+ax*y_nps 
bnodetype(i) = 1; 

end

for i = 1 : ax-1
for j = xl*y_nps+l+yl+y_nps*i, bnodetype(j) = 1; end 

end

for i = 1 : ax-1
for j = xl*y_nps+l+y2+y_nps*i, bnodetype(j) = 1; end 

end

end
end

pointer = 1;
N O D E IN D E X (l,l) = 1; NO D EIN DEX(l,2) = 1; 
for i = 1 :nnod-l 

i f  nodetype(i) =  0 
pointer = pointer+vpn;
N O D EIN D EX(i+l, 1) = i+1;
N O DEINDEX(i+1,2) = pointer; 

elseif nodetype(i) =  1 
pointer = pointer+dvpn;
NO DEINDEX(i+1,1) = i+1;
NO DEINDEX(i+1,2) = pointer; 

end 
end
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% -------------------------------------------------------------------------------------------------------------------------
% USER INFORMATION
% -------------------------------------------------------------------------------------------------------------------------
dispC')
disp(' Four-Noded Element')
fprintfC NLAM  = %g \n',nlam)
fprintf(' Mesh Size = %g x %g \n',x_eps,y_eps)
fprintf(' Global matrix Size = %g x %g \n',vpn*nnod+dnod* (dvpn-vpn),vpn*nnod . . .
+dnod* (dvpn-vpn))
dis
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APPENDIX C 

DELAMINATION PATTERNS (PIN) AND  

MATLAB FOR-LOOPS FORMULATION
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Delamination Patterns (PIN) and MATLAB FOR-Loops Formulation
(Refer to Figure 28)

Notations of Delamination

p Delamination in x-direction or y-direction

p% Percentage of delamination in x-direction or y-direction

Pstart Delamination start in x-direction or y-direction

P  tni Delamination end in x-direction or y-direction
xl Length of delamination start in xl-direction
y i Length of delamination start in yl-direction
x2 Length of delamination start in x2-direction
y2 Length of delamination start in y2-direction

z d Layer of delamination

xd Length of delamination start in x-direction

yd Length of delamination start in y-direction

aX Length of actual delamination in x-direction

ay Length of actual delamination in y-direction

4 Length of the plate in x-direction (8 cm)

4 Length of the plate in y-direction (4 cm)

PIN iz d xd yd <*x ay\

Note: FOR-loop is independent from the plate dimensions but depends on the mesh size 
and the percentage of the delamination.

PIN is independent from the mesh size but depends on the plate dimension and 
the percentage of the delamiation.

Mesh-Size = 1 0 x 5
Mesh size = xMesh x yMesh => xMesh = 10 elements, yMesh = 5 elements

20 percent delamination (20p%)

p start: ^ ^ 2  (Mesh)= 40%(Mesh) = 0.4(Mesh)

ênd : (40% + 20%)Mesh = 60% (Mesh) = 0.6 (Mesh)

xl =0.4(10) —► 0.6(l0)-l fo rx l = 4 —► 5
> = 0 .4 ( 5 ) —►0.6(5)-1 FOR-Loops v for y l = 2 —► 2

x2 = xl +1 -►0.6(10) ...... ..........r forx2 = x l +1 —► 6
y2 = y l +1 ->0.6(5) for y2 = yl +1 —► 3
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Zd =0,l ,  2,3
L - a ,  8-1 .6

*d=- = 3.2cm

pin  20̂  - ]  i _ 5 L = i _ M = i . 6cm 
2  2  

ax = 20%(Zx) = 0.2(8cm) = 1.6cm
ay = 20 %[Ly)=  0.2 (4cm) = 0.8cm 

PIN 20^  = \Zd 3.2cm 1.6cm 1.6cm 0.8cm]

60 percent delamination (60p„/o) 
100% -60%

ŝtart '

P e n d  

60 p*

(Mesh) = 20% (Mesh) = 0.2(Mesh) 

(20% + 60%)Mesh = 80% (Mesh) = 0.8(Mesh)

xl = 0.2(l 0) —> 0.8(l 0) -1  
y l =0.2(5) —>0.8(5)-1 
x2 = xl +1 —> 0.8(10 ) 
y2 = yl + l ->0.8(5)

FOR-Loops

PIN 60 g>%

z d = 0,1, 2, 3

*d=-
L - a ,  8 -4 .8

yd =
Ly ~ ay

2
4 -2 .4

= 1.6cm

= 0.8cm
2  2  

ax = 6 0 % (4 ) = 0.6(8cm) = 4.8cm 
ay = 60% fz j= 0 .6 (4 c m ) = 2.4 cm

P I N ^  = \Zd 1.6cm 0.8cm 4.8cm 2.4cm]

forx l = 2 —>7 
for y l = 1 —> 3

forx2 = x l + 1—>8 
for y2 = y l +1 -»  4

100 percent delamination (l 00p%) 
100%-100%

P.start (Mesh) =0%  (Mesh) = 0

P end : (0% + 100%)Mesh = 100% (Mesh) = l(Mesh)

lOOp,

xl = 0 (1 0 ) - > l ( l0 ) - l fo rx l = 0 —> 9
yl = 0(5) —>1(5)—1 FOR-Loops for yl = 0 —> 4

“ x2 = xl + 1 ->  1(10) for x2 = x l + 1—>10
y2 = yl +1 —> 1(5) for y2 = yl + 1—>5
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zd=0,1, 2 ,3
L - a  8 -8

xd=' = Ocm

PIN i o o -< L - a  4 - 4
yd = —   = --------= 0cm

2  2  
ax = 100%(Zx)= l(8cm )=8cm
a = 100% [Ly) =1 (4 cm) = 4 cm

PIN loop, = [ Z d 0 cm 0 cm 8 cm 4 cm]

Mesh-Size = 1 2 x 6
Mesh size= xMesh x yMesh =>

100 percent delamination (l 00p% ) 
1 0 0 % - 1 0 0 %

xMesh = 12 elements, yMesh = 6 elements

P ,start * (Mesh) = 0% (Mesh) = 0

Pend : (0% + 100%)Mesh = 100% (Mesh) = l(Mesh)

lOOp*

xl =0(12) —» l( l2 ) - l  
yl = 0(6) -> 1(6) -1  
x2 = xl +1 -+1(12) 
y2 = yl + l-> l(6 )

Zd = 0 , 1, 2,3

4 z 5 L  = ^ Z ^  = 0cm

PINioop, ~ \ y  = Ly °y = L A  = ocm 
2  2  

ax = 100%(zJ = l(8cm) = 8cm
ay = 100 %\Ly)= l(4cm )= 4cm 

PIN loop, = lz d 0cm Ocm 8cm 4cm]

FOR-Loops

fo rx l = 0 - > l l  
fory l = 0 —>5

forx2 = x l + 1—>12 
for y2 = y l +1 -+  6

Mesh-Size = 1 6 x 8  
Mesh size = xMesh x yMesh

100 percent delamination (l00p%)
1 0 0 % - 1 0 0 % /. .  .

Pstart: -------- 2  (Mesh) = 0%(Mesh) = 0

Pend •' (0% + 100%)Mesh = 100% (Mesh) = l(Mesh)

xMesh = 16 elements, yMesh = 8 elements

149



www.manaraa.com

loop.

= 0 (16) —> l(l 6) — 1 

= 0 (8 ) —> 1(8 ) — 1

PIN 100p%

xl = 1

y l , ,  , ,

x2 = xl +1 ->1(16) 
y2 = y l +1 —>• 1(8)

Zd = 0 , 1, 2,3
Lr - a r 8 -8

FOR-Loops

fo rx l = 0 -+ 1 5  
for y l = 0 ->  7

for x2 = x l + 1 —> 16 
for y2 = y l + 1 -+  8

= Ocm

yd
L - a  4 - 4

— = 0cm
2  2  

ax = 1 00% (4)=  l(8cm) = 8cm 
ay = 100% (4)=  l(4cm )= 4cm

HNioo^ =[Zd Ocm Ocm 8cm 4cm]

Mesh-size = 1 8 x 9
Mesh size= xMesh x yMesh => xMesh =18 elements, yMesh = 9 elements

100 percent delamination (l00p%) 
100% -100%

P sl (Mesh)=0%(Mesh) = 0

Pend : (0% + 100%)Mesh = 100%(Mesh)=l(Mesh)

lOOp,

= 0(18) - + l ( l8 )-1  
= 0(9) -+1(9)—1

PIN 100 p%

Xl =!

yl  ' f ' \x2 = xl +1 -^1(18)
y2 = yl +1 -+1(9)

Zd = 0 , 1, 2,3

FOR-Loops

fo rx l = 0 -+ 1 7  
for y l = 0 -+  8

for x2 =  x l + 1 —>18 
for y2 = y l +1 -+  9

x,, =-  Lx ■—* = — -  = 0cm

yd
L - a  4 - 4

t = 0cm

ay = 100%(z )=  l(4cm) = 4cm
ax = 100% (4) = l(8cm) = 8cm

J = M

=[Zd 0cm Ocm 8cm 4cm]

Mesh Size = 20 x 10 
Mesh size = xMesh x yMesh

20 percent delamination (20p%)

Pstart : — — • (Mesh) = 40%(Mesh) = 0.4(Mesh) 

p end : (40% + 20%)Mesh = 60% (Mesh) = 0.6 (Mesh)

xMesh = 20 elements, yMesh =10 elements
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2 0 ^

PIN

PIN 20 p %

= 0.4(20) 0.6(20)-1
= 0.4(l0)->0.<

xl = 1

yl  = 0.4(l 0) —> 0.6(l 0) -1  
x2 = xl +1 —̂  0.6(20) 
y2 = j>l + l —>0.6(10)

FOR-Loops

forx l = 8 —>11 
fory l = 4 -> 5

for x2 = x l +1 —> 12 
for y2 = yl +1 —> 6

^ = 0 ,1 , 2,3
L - a  8 -1 .6

= 3.2cm

20g?% yd = —
L„ -  a 4 -0 .8  t ,

— —----------- = 1 .6 cm
2  2  

ax = 20%(LX)=  0.2(8cm) = 1.6cm
a = 2 0 % ( L ) = 0 . 2  (4 cm) = 0 .8  cm

= [Zd 3.2cm 1.6cm 1.6cm 0.8cm]

40 percent delamination (40p% )

100% -  4 Qi ! ( Mesh) = 3Q% (Mesh) = 0 3  (Mesh)
f^slart

40p,

(30% + 40%)Mesh = 70% (Mesh) = 0.7 (Mesh)

xl =0.3(20)->0.7(20)-1
y l  =  0 . 3 ( l 0 ) —> 0. 7(10) — 1 FOR-Loops

x2  = xl + 1  —> 0 .7 (2 0 ) 
y2 = y\ + l ->0.7(10)

Zd = 0 , 1, 2,3
L - a r 8 -3 .2

PIN

**=■ = 2.4cm

yd = = 1.2cm
2  2  

ax = 40%(LX) =0.4 (8 cm)=3.2 cm
av =40% (Lv)=0.4(4cm)=1.6cm

P I N * .  2.4cm 1.2cm 3.2cm 1.6cm]

forx l = 6 —>13 
for y l = 3 —> 6

forx2 = x l + 1—>14 
fory2 = yl + 1—>7

60 percent delamination (60p% )

l Q0% - 60% (M esh) = 2Q% (Mesh) = 0  2 (Mesh)
P  start

P end  

60 p0/{

(20% + 60%)Mesh = 80% (Mesh) = 0.8(Mesh)

xl = 0.2(20 ) —> 0.8(20)-1 fo rx l = 4 —>15
>4 =0.2(l0’)—>0.8(10)-1 FOR-Loops v fo ry l = 2 -> 7
x2 = xl +1 -+0.8(20)

r forx2 = x l + 1—>16
y2 = yl + l ->0.8(l0) fory2 = y l + l - > 8
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zd=0,1, 2,3
L - a . 8 -4 .8

*d=-

yd =
Ly-Cly

2
4 -2 .4

= 1.6cm

= 0.8cm
2  2  

ax = 60% (LJ  = 0.6 (8 cm) = 4.8 cm
a = 60%(x ) = 0.6 (4cm) = 2.4cm

P IN 60^  = [Zd 1.6cm 0.8cm 4.8cm 2.4cm]

80 percent delamination (80p% )
100% -80%

Pstart ' /■>

Pend 

80p9

(Mesh) = 10% (Mesh) = 0.1 (Mesh) 

(10% + 80%)Mesh = 90% (Mesh) = 0.9 (Mesh)

PIN

xl = 0. l(20)—>0.9(20)-1 
y l = 0.1(10 )-> 0 .9(10 ) - l  
x2 = xl + l ->0.9(20) 
y2 = y \  + \ ->0.9(10)

Zd = 0 , 1, 2, 3

FOR-Loops

xd =

yd =

Lx °x - 8 6 4 -= 0 .8 cm

Ly ~ ay
2

4 -3 .2
= 0.4cm

PIN

ax =80% (Xr) = 0.8(8cm) = 6.4cm 
ay = 80 %{Ly)= 0.8(4cm)= 3.2cm

= [Zd 0.8cm 0.4cm 6.4cm 3.2cm]

forx l = 2 —>17 
foryl = 1 -> 8

for x2 = x l + 1—>18 
fory2 = y l + l - > 9

100 percent delamination (l 00p% ) 
100%-100%

P  s, (Mesh) = 0%(Mesh) = 0

Pend : (0% + 100%)Mesh = 100% (Mesh) = l(Mesh)

100p*

II 0 13
s

0 1 13
s

0 "7̂ fo rx l = 0 -» 1 9
y l  =0(10) —> 1(1 0 ) —1 FOR-Loops v foryl = 0 —>9
x2 = xl +1 -> 1(20) r for x2 = x l + 1—>20
_y2 = yl + l —>l(l0) for y2 = yl + 1 ->  10
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PIN 100 p%

zd= 0,1, 2,3
Lx .gx= j _ l  = 0 cm

Ly - a  4 - 4  
^ = ^ _  = _  = 0cm

at = 100%(lx) = l(8cm) = 8cm 

= lOQ%(Ly)=  l(4cm) = 4cm

PIN 100j9</ = \Zd Ocm Ocm 8 cm 4 cm]

delamination end

10
9

7

I20 5

' 60° 

8 0  %  .

! 00 % ,

delamination start
J0\5

(20x10'

Mesh-size

Ly

4 cm

3.2

2.4

1.6

0.8

0.8

0 1

1.6 2.4 3.2

40%

20%

6f%

100%
80%

5.6 6.4 7.2 8 cm
Lx

4. 5 6 7 '8_ _9  ̂ 10 IJ 12 ,13 14

r* 20%
- -  4 0 %

■■ • 60 %
    8 0 %  -

   100 % -

7 10 Elements

13 ;14 15 16 17 IS ;19 20 Elements

delamination start delamination end

FIGURE 28. Area of delamination for plate dimension 8cm x 4cm with mesh size 10x5
and 20x10.
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APPENDIX D  

FINITE ELEMENT DATA SETS CALCULATION
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Finite Element Data Sets Calculation of Plate Dimension 8cm x 4cm
(Refer to Figure 28)

Mesh Size = 1 0 x 5

20 percent delamination 
fo rx l = 4 -> 5

foryl = 2 -»  2 Formula .

forx2 = xl + 1 -»  6 
for y2 = y l + 1 -+  3

£ ( 6 - x l ) = 2  + l = 3
*1=4

i ( 3 - y o = i
yl=2

For one layer: 3 (l)=  3 data sets 
For four layers: 4 (3) = 12 data sets

60 percent delamination 
fo rx l = 2 —» 7

for y 1 = 1  ̂ 3 Formula

forx2 = x l + 1 —» 8 
fory2 = yl + 1 -»  4

£ ( 8 - x l ) = 6  + 5 + 4 + 3 + 2 + l = 3(7)=21
Xl32
£ ( 4 - y l ) = 3  + 2 + l = 6
yl=l
For one layer: 21 (6)=126 data sets 
For four layers: 4 (126) = 504 data sets

100 percent delamination 
fo rx l = 0 —>■ 9

for y l = 0 ► 4 Formula .
forx2 = x l + 1 —> 10 

for y2 = yl + 1 ->  5

J ( l0 -J c l)= 1 0  + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + l = 5 ( l l)=
xl4°
£ ( 5 - j / l ) =  5 + 4 + 3 + 2 + l = 2.5(6)= 15
^1=0

For one layer: 55 (l 5) = 825 data sets
For four layers: 4 (825) = 3,300 data sets

I X 10- * 1) E C - j O
*1=0 yl=0

55

2 ( 8 - * l ) | ] ( 4 - * l )
*1=2 >>1=1

I(6-*l) I(3-*l)
*1=4 yl=2
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Mesh Size = 1 2 x 6

100 percent delamination 
fo rx l = 0 -► 11 

fory l = 0 -»  5
forx2 = x l + 1 —» 12 

fory2 = y l + 1 -> 6

Formula
11

£ ( l 2 - * l )  E ( 6 - ^ ' )
y\=0xl=0

£ ( i 2 - * 0  = 12+ 11 + 10 + 9 + 8 + 7+  6 + 5 + 4 + 3 + 2 + 1 = 6(13)= 78
*1=0

^ ( 6 - y l )  = 6 +5 + 4+  3 + 2 + 1 = 3(7)=21
yl=0

For one laye: 78 (21) = 1,638 data sets 
For four layers: 4(l,638) = 6,552 data sets

Mesh Size = 1 6 x 8

100 percent delamination 
fo rx l = 0 —> 15 

foryl = 0 —> 7
forx2 = x l + 1 —» 16 

for y2 = y l + 1 -+ 8
15

Formula
V ( l 6 - x l ) X ( 8 - y l )
*1=0

]T ( l6 - .x l)  = 16 + 15 + 14 + 13 + 12 + l 1 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 8 (l7 ) = 136
*1=0

(8 — y l) = 8 + 7 + 6 + 5 + 4 + 3 + 2 + l = 4(9)=36
y\=0
For one layer: 136 (36)=4,896 data sets
For four layers: 4 (4,896)=19,584 data sets

Mesh Size = 1 8 x 9

100 percent delamination 
forxl = 0 -> 17 

foryl = 0 —» 8
forx2 = x l + 1 —> 18 

fory2 = yl + 1 -»  9
17

Formula Y ( l 8 - x l )  Y ( 9 - y l )

^ ( l 8 - x l )  = 18 + 17+ 16+15 +14+ 13 +12+ 11 +10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1
jcl=0 / \

= 9(19)= 171

^ ( 9 - 7 l) = 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 4.5(10)= 45
>>1=0

For one layer: 171 (45) = 7,695 data sets
For four layers: 4 (7,695)=30,780 data sets
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Mesh Size = 20 x 10

20 percent delamination 
fo rx l = 8 —> 11 

fo ry l = 4 -+ 5
forx2 = x l + 1 —» 12 

fory2 = y l + 1 -»  6

j r ( l 2 - x l )  = 4+3 + 2 + l =2(5) = 10
*1=8

£ ( 6 - > l ) = 2  + l = 3
yl=4
For one layer: 10 (3) = 30 data sets 
For four layers: 4(30) = 120 data sets

40 percent delamination 
fo rx l = 6 —> 13 

fory l = 3 —» 6
forx2 = x l + 1 —> 14 

fory2 = yl + 1 —» 7
13

Formula

Formula

£ ( l 4 - x l ) = 8  + 7 + 6 + 5 + 4+3 + 2 + l =4(9 ) = 36
*1=6

- j l ) = 4 + 3  + 2 + l = 2(5)=10
>-1=3
For one layer: 36(l 0) = 360 data sets 
For four layers: 4(360) = 1,440 data sets

60 percent delamination 
fo rx l = 4 —> 15 

foryl = 2 —» 7
forx2 = x l + 1 —> 16 

fory2 = yl + 1 -> 8
15

Formula

2 ( 1 2 - x l )  2 ( 6 - ^ 1 )

2 (14- * 1) 2 (7- ^ 1)

2 ( 1 6 " ^ ) 2  (8 - ^ 1)

2 ( l 6 - x l )  = 12 + 11 + 10 + 9 + 8 + 7+ 6  + 5 + 4 + 3 + 2 + 1 = 6 (l3 ) = 78
*1=4

^ ( 8 - y l ) = 6  + 5 + 4 + 3 + 2 + l = 3(7) = 21
>-1=2

For one layer: 78 (21) = 1,63 8 data sets 
For four layers: 4(l,638) = 6,552 data sets

80 percent delamination 
fo rx l = 2 —> 17 

foryl = 1 —> 8
for x2 = x l + 1 —» 18 

fory2 = yl + 1 —> 9

Formula
2 ( i8 - * i ) 2 ( 9 - ^ )
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£ e » - * o  = 16 + 15 + 14 + 13 + 12 + 11 + 10+9 + 8 + 7+ 6  + 5 + 4+3  + 2 + 1 = 8(l7) = 136
*1=2

^ ( 9 - y l ) = 8  + 7 + 6+5  + 4 + 3 + 2 + l = 4(9)=36
y\=\
For one layer: 136(36) = 4,896 data sets 
For four layers: 4(4,896) = 19,584 data sets

100 percent delamination 
fo rx l = 0 -+ 19

fory l = 0 -+ 9 Formula

for x2 = x l + 1 —> 20 
fory2 = yl + 1 -+ 1 0

19

^ ( 2 0 - x l ) =  20 + 19 + 18 +17+ 16 + 15+ 14 + 13 + 12 + 11 + 10 + 9 + 8 + 7 + 6  + 5+  4
*1=0

+ 3 + 2 + 1  
= 10(2l)=210

J ( l 0 - y l )  = 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + l = 5 (ll)= 5 5
>>1=0

For one layer: 210(55)=11,550 data sets
For four layers: 4 (l 1,550)=46,200 data sets

V ( 2 0 - x l )  V ( l 0 - y l )
*1=0
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APPENDIX E 

MATLAB FOR-LOOPS CONFIGURATION
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MATLAB FOR-Loops Configuration o f Plate Dimension 8cm x 4cm
with Mesh Size 20x10 (100 Percent Delamination)

(Refer to Figure 29)

FOR-Loops
forxl = 0 —> 19; foryl = 0 —> 9; forx2 = xl + 1 —> 20; fory2 = yl + 1 -»  10

For x l=0
yl = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

fy l = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

• y2 = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

|yi= 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

fy l=  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

y l=  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

• y2 = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

y l=  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
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fyi= 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

fy i— 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

y l= 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
x2= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

9

(2 0 -x l)£ ( l 0 - ;yl) = 20(55) = 1100
yl=0

F o rx l= l
y i= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

y i= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x2 = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 0 1 0 1 0 1 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

y i= 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
x2 = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1 0 1 0 1 0 1 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
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y l=  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  3
x2 = 2 3 4 5 6  7 8  9 10 11 12 13 14 15 16 17 18 19 20

. y2 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  4

10 10 10 10 10 10 10 10

yl  = 4 4 4 4 4 4 4 4
x2= 2 3 4 5 6 7 8 9

<y2 = 5  5 5 5 5 5 5 5

10 10 10 10 10 10 10 10

yl = 5 5 5 5 5 5 5 5  
x2= 2 3 4 5 6 7 8 9

• y2  = 6  6  6  6  6  6  6  6

10 10 10 10 10 10 10 10

yl = 6 6 6 6 6 6 6 6  

x2= 2 3 4 5 6 7 8 9
. y2 = 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10

yl = 7 7 7 7 7 7 7 7  
x2= 2 3 4 5 6 7 8 9

<y2  = 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10

yl = 8 8 8 8 8 8 8 8  

x2= 2 3 4 5 6 7 8 9
, y2 = 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10

yl = 9 9 9 9 9 9 9 9  

x2= 2 3 4 5 6 7 8 9
< y2  = 1 0  1 0  1 0  1 0  1 0  1 0  1 0  1 0

10 10 10 10 10 10 10 10

(20 -  xl) J ( l  0 -  j;l) = 19(55) = 1045
y l= 0

10 10 10 10 10 10 10 10 10 10

4 4 4 4 4 4 4 4 4 4  

11 12 13 14 15 16 17 18 19 20 
5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 5 5 5  
11 12 13 14 15 16 17 18 19 20
6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10

6 6 6 6 6 6 6 6 6 6  
11 12 13 14 15 16 17 18 19 20 
7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10

7 7 7 7 7 7 7 7 7 7  
11 12 13 14 15 16 17 18 19 20
8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10

8 8 8 8 8 8 8 8 8 8  
11 12 13 14 15 16 17 18 19 20
9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10

9 9 9 9 9 9 9 9 9 9  
11 12 13 14 15 16 17 18 19 20
10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10

4
10
5

10

5
10
6

10

6
10
7

10

7
10
8

10

8
10
9

10

9
10
10

10
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For x l=2
yl = 0 0 0 0 0 0 0  

x2 = 3 4 5 6 7 8 9  
<y2  = 1 1 1 1 1 1 1

10 10 10 10 10 10 10

yl  = 1 1 1 1 1 1 1

x2 = 3 4 5 6 7 8 9
< y2  = 2  2  2  2  2  2  2

10 10 10 10 10 10 10

>1 = 2 2 2 2 2 2 2  
x2  = 3 4 5 6 7 8 9

< y2 = 3 3 3 3 3 3 3

10 10 10 10 10 10 10

yl  = 3 3 3 3 3 3 3
x2 = 3 4 5 6 7 8 9  

<y2 = 4 4 4 4 4 4 4

10 10 10 10 10 10 10

yl  = 4 4 4 4 4 4 4
x2  = 3 4 5 6 7 8 9  

<y2 = 5 5 5 5 5 5 5

10 10 10 10 10 10 10

yl  = 5 5 5 5 5 5 5
x2 = 3 4 5 6 7 8 9  

- y2  = 6  6  6  6  6  6  6

10 10 10 10 10 10 10

yl  = 6  6  6  6  6  6  6

x2 = 3 4 5 6 7 8 9
< y2 = 7 7 7 7 7 7 7

10 10 10 10 10 10 10

0 0 0 0 0 0 0 0 0  

12 13 14 15 16 17 18 19 20 
1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10

1 1 1 1 1 1 1 1 1  

12 13 14 15 16 17 18 19 20
2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10

2 2 2 2 2 2 2 2 2  
12 13 14 15 16 17 18 19 20
3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10

3 3 3 3 3 3 3 3 3  
12 13 14 15 16 17 18 19 20
4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10

4 4 4  4 4 4 4 4  4
12 13 14 15 16 17 18 19 20 
5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 5 5  
12 13 14 15 16 17 18 19 20
6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10

6 6 6 6 6 6 6 6  6 
12 13 14 15 16 17 18 19 20
7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10

0  0

10 11
1 1

10 10

1 1

10 11
2 2

10 10

2 2
10 11
3 3

10 10

3 3
10 11
4 4

10 10

4 4
10 11
5 5

10 10

5 5
10 11
6 6

10 10

6 6
10 11
7 7

1 0  1 0
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yl  = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
x2 = 3 4 5 6 7 8 9 1 0 11 1 2 13 14 15 16 17 18 19 2 0

< y2  = 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

yl  = 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

x2  = 3 4 5 6 7 8 9 1 0 11 1 2 13 14 15 16 17 18 19 2 0

- y2 = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

yl  = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
x 2 =  3 4 5 6 7 8 9 1 0 11 1 2 13 14 15 16 17 18 19 2 0

■ y2  = 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

13
s

0 1 M
*

0 1 yi )

00II = 990
_vi=o

For xl=3
y l=  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2=  4 5 6 7 8 9 1 0 11 1 2 13 14 15 16 17 18 19 2 0

• y2  = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

yl = i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x2= 4 5 6 7 8 9 1 0 11 1 2 13 14 15 16 17 18 19 2 0

< y2  = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

yl = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

x2= 4 5 6 7 8 9 1 0 11 1 2 13 14 15 16 17 18 19 2 0

« y2 = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

y i=  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
x2= 4 5 6 7 8 9 1 0 11 1 2 13 14 15 16 17 18 19 2 0

« y2 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
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yl = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
x2 = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
x2 = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
x2 = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
x2 = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
x2 = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
x2 = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

( 2 0 - x l ) ^ ( l0 - ^ l ) =  17(55)=935
y l= 0

For xl=4
yi = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
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yl = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y l  = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
x2 = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 
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y l=  9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
x2= 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

9

( 2 0 - x l ) ^ ( l 0 - ^ l ) =  16(55)=880
yl=0

For xl=5
yi = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

y i= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

'y i = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

>1 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
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y l = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1° 10 10 10 10 10 10 10 10 10 10 10 10 10 10

'y l=  8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
x2 = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

1O1O

yl) II L
h

U
l II 825

1̂=0

Forx1=6
yl = 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2= 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10 10 10 10 10

y l=  1 1 1 1 1 1 1 1 1 1 1 1 1 1
x2 = 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10 10 10 10 10 10

f y i=  2 2 2 2 2 2 2 2 2 2 2 2 2 2
x2= 7 8 9 10 11 12 13 14 15 16 17 18 19 20

- y2 = 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10 10 10 10
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yi = 3 3 3 3 3 3 3 3 3 3 3 3 3 3
x2 = 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10 10 10 10 10 10

'y l = 4 4 4 4 4 4 4 4 4 4 4 4 4 4
x2 = 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 5 5 5 5 5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 5 5 5 5 5 5 5 5 5 5 5 5 5 5
x2 = 7 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 6 6 6 6 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10 10 10 10 10

y i= 6 6 6 6 6 6 6 6 6 6 6 6 6 6
x2 = 7 8 9 10 11 12 13 14 15 16 17 18 19 20II 7 7 7 7 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 7 7 7 7 7 7 7 7 7 7 7 7 7 7
x2 = 7 8 9 10 11 12 13 14 15 16 17 18 19 20

<y2 = 8 8 8 8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 8 8 8 8 8 8 8 8 8 8 8 8 8 8
x2 = 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 9 9 9 9 9 9 9 9 9 9 9 9 9 9
x2 = 7 8 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 10 10 10 10 10 10 10 10 10 10 10 10 10 10

(20- jc

10 10

1 )± (1 0 -
_Kl=0

10

yi)

10 10 

= 14(55) =

10

= 770

10 10 10 10 10 10 10 10
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For xl=7
yl = 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 1 1 1 1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10 10 10 10

yi = 1 1 1 1 1 1 1 1 1 1 1 1 1
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 2 2 2 2 2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 2 2 2 2 2 2 2 2 2 2 2 2 2
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 3 3 3 3 3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10 10 10

y l = 3 3 3 3 3 3 3 3 3 3 3 3 3
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 4 4 4 4 4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10 10 10 10 10

y l = 4 4 4 4 4 4 4 4 4 4 4 4 4
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 - 5 5 5 5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 5 5 5 5 5 5 5 5 5 5 5 5 5
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 6 6 6 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 6 6 6 6 6 6 6 6 6 6 6 6 6
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 7 7 7 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10 10 10 10
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y i - 1 7 7 7 7 7 7 7 7 7 7 7 7
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 8 8 8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 8 8 8 8 8 8 8 8 8 8 8 8 8
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10

yl = 9 9 9 9 9 9 9 9 9 9 9 9 9
x2 = 8 9 10 11 12 13 14 15 16 17 18 19 20
y2 = 10 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10

9

( 2 0 - j r i ) ^ ( l 0 - y l )  = 13(55)= 715
y \= o

For x 1=8
yl = 0 0 0 0 0 0 0 0 0 0 0 0
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

- y2 = 1 1 1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10 10 10

yi = 1 1 1 1 1 1 1 1 1 1 1 1
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

II 2 2 2 2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10 10 10 10

yi = 2 2 2 2 2 2 2 2 2 2 2 2
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

<y2 = 3 3 3 3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10 10

fy i = 3 3 3 3 3 3 3 3 3 3 3 3
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

• y2 = 4 4 4 4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10 10 10 10
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fy l = 4 4 4 4 4 4 4 4 4 4 4 4
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

< y2 = 5 5 5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10 10 10

yi = 5 5 5 5 5 5 5 5 5 5 5 5
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

« y2 = 6 6 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10 10 10

yi = 6 6 6 6 6 6 6 6 6 6 6 6
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

II 7 7 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10 10 10

>1  = 7 7 7 7 7 7 7 7 7 7 7 7
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

■ y2 = 8 8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10 10 10

>1  = 8 8 8 8 8 8 8 8 8 8 8 8
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

< y l  = 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10

>1  = 9 9 9 9 9 9 9 9 9 9 9 9
x2 = 9 10 11 12 13 14 15 16 17 18 19 20

<y2 = 10 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10

*1osr
j/ l ) Y  { l0 - y \ ) = 12(55) = 660

_yl=0

For xl==9
yi = 0 0 0 0 0 0 0 0 0 0 0
x2 = 10 11 12 13 14 15 16 17 18 19 20
y2 = 1 1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10 10
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yi = 1 1 1 1 1 1 1 1 1 1 1
x2 = 10 11 12 13 14 15 16 17 18 19 20
y2 = 2 2 2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10 10 10

yi = 2 2 2 2 2 2 2 2 2 2 2
x2 = 10 11 12 13 14 15 16 17 18 19 20
y2 = 3 3 3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10 10 10

yi = 3 3 3 3 3 3 3 3 3 3 3
x2 = 10 11 12 13 14 15 16 17 18 19 20
y l  = 4 4 4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10 10 10

>1 = 4 4 4 4 4 4 4 4 4 4 4
x2 = 10 11 12 13 14 15 16 17 18 19 20
y l  = 5 5 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10 10 10

yi = 5 5 5 5 5 5 5 5 5 5 5
x2 = 10 11 12 13 14 15 16 17 18 19 20

II 6 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10 10

y i= 6 6 6 6 6 6 6 6 6 6 6
x2 = 10 11 12 13 14 15 16 17 18 19 20

« y l  = 7 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10 10

'y l = 7 7 7 7 7 7 7 7 7 7 7
x2 = 10 11 12 13 14 15 16 17 18 19 20

- y l  = 8 8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10 10

yi = 8 8 8 8 8 8 8 8 8 8 8
x2 = 10 11 12 13 14 15 16 17 18 19 20

- y2 = 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10
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> 1  = 9 9 9 9 9 9 9 9 9 9 9
x2 = 10 11 12 13 14 15 16 17 18 19 20

< y2 == 10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

(2 0 - x l ) f ( lO - yi)-= 11(55) == 605
><1=0

For xl=10  
> 1 =  0 0 0 0 0 0 0 0 0 0
x2= 11 12 13 14 15 16 17 18 19 20

< y2 = 1 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10

> 1  =  1 1 1 1 1 1 1 1 1 1  
x2 = 11 12 13 14 15 16 17 18 19 20

< y2 = 2 2 2 2 2 2 2 2 2  2

10 10 10 10 10 10 10 10 10 10

>1 = 2 2 2 2 2 2 2 2 2 2  
x2= 11 12 13 14 15 16 17 18 19 20

<y2 = 3 3 3 3 3 3 3 3 3  3

10 10 10 10 10 10 10 10 10 10

> 1  = 3 3 3 3 3 3 3 3 3 3  
x2= 11 12 13 14 15 16 17 18 19 20

<y2 = 4 4 4 4 4 4 4 4 4  4

10 10 10 10 10 10 10 10 10 10

> 1 = 4 4 4 4 4 4 4 4 4  4
x2= 11 12 13 14 15 16 17 18 19 20

< y2 = 5 5 5 5 5 5 5 5 5  5

10 10 10 10 10 10 10 10 10 10

> 1 =  5 5 5 5 5 5 5 5 5 5
x2= 11 12 13 14 15 16 17 18 19 20

< y2 = 6 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10 10
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fyi= 6 6 6 6 6 6 6 6 6 6
x2 = 11 12 13 14 15 16 17 18 19 20

< y2 = 7 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10 10

yl  = 7 7 7 7 7 7 7 7 7 7
x2 = 11 12 13 14 15 16 17 18 19 20

< y2 = 8 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10 10

yl  = 8 8 8 8 8 8 8 8 8 8
x2 = 11 12 13 14 15 16 17 18 19 20

< y2 = 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10

'yi= 9 9 9 9 9 9 9 9 9 9
x2 = 11 12 13 14 15 16 17 18 19 20

‘ y2 = 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

1O

l )Y ( lO -y l) II o 'uT
'

= 550
>>1=0

For x l:=11
y i= 0 0 0 0 0 0 0 0 0
x2 = 12 13 14 15 16 17 18 19 20

<y2 = 1 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10

yi = 1 1 1 1 1 1 1 1 1
x2 = 12 13 14 15 16 17 18 19 20

« y2 = 2 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10 10

y l = 2 2 2 2 2 2 2 2 2
x2 = 12 13 14 15 16 17 18 19 20

■ y2 = 3 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10 10
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yi = 3 3 3 3 3 3 3 3 3
x2 = 12 13 14 15 16 17 18 19 20
y2 = 4 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10 10

y l = 4 4 4 4 4 4 4 4 4
x2 = 12 13 14 15 16 17 18 19 20
y2 = 5 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10 10

'y l = 5 5 5 5 5 5 5 5 5
x2 = 12 13 14 15 16 17 18 19 20
y2 = 6 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10 10

fyi = 6 6 6 6 6 6 6 6 6
x2 = 12 13 14 15 16 17 18 19 20

< y2 = 7 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10 10

yi = 7 7 7 7 7 7 7 7 7
x2 = 12 13 14 15 16 17 18 19 20II 8 8 8 8 8 8 8 8 8

10 10 10 10 10 10 10 10 10

y l = 8 8 8 8 8 8 8 8 8
x2 = 12 13 14 15 16 17 18 19 20

« y2 = 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10

'yi = 9 9 9 9 9 9 9 9 9
x2 = 12 13 14 15 16 17 18 19 20

<y2 = 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10

(20 -  x l ) £  (l 0 -  y l) = 9 (55) = 495
y l= 0
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For xl=12  
y l = 0 0 0 0 0 0 0 0
x2=  13 14 15 16 17 18 19 20
y2 = 1 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10

[ y i = 1 1 1 1 1 1 1 1
x2=  13 14 15 16 17 18 19 20
y2 = 2 2 2 2 2 2 2 2

10 10 10 10 10 10 10 10

[ y i = 2 2 2 2 2 2 2 2
x2=  13 14 15 16 17 18 19 20
y2 = 3 3 3 3 3 3 3 3

10 10 10 10 10 10 10 10

[y i  = 3 3 3 3 3 3 3 3
x2=  13 14 15 16 17 18 19 20

<y2 = 4 4 4 4 4 4 4 4

10 10 10 10 10 10 10 10

> 1 =  4 4 4 4 4 4 4 4
x2=  13 14 15 16 17 18 19 20
y2 = 5 5 5 5 5 5 5 5

10 10 10 10 10 10 10 10

II 5 5 5 5 5 5 5
x2 = 13 14 15 16 17 18 19 20
y2 = 6 6 6 6 6 6 6 6

10 10 10 10 10 10 10 10

y l=  6 6 6 6 6 6 6 6
x2= 13 14 15 16 17 18 19 20
y2 = 7 7 7 7 7 7 7 7

10 10 10 10 10 10 10 10

yi = 7 7 7 7 7 7 7
x2 = 13 14 15 16 17 18 19
y2 = 8 8 8 8 8 8 8

10 10 10 10 10 10 10

yi = 8 8 8 8 8 8 8
x2 = 13 14 15 16 17 18 19
y2 = 9 9 9 9 9 9 9

10 10 10 10 10 10 10

y l = 9 9 9 9 9 9 9
x2 = 13 14 15 16 17 18 19
y2 = 10 10 10 10 10 10 10

10 10 10 10 10 10 10

8

(20 -  xl) £ ( l0  -  y l) = 8(55) = 440
yl=0

9
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For xl=13
y l = 0 0 0
x2 = 14 15 16
y2 = 1 1 1

10 10 10

>1 = 1 1 1
x2 = 14 15 16
y2 = 2 2 2

10 10 10

y i = 2 2 2
x2 = 14 15 16
y2 = 3 3 3

10 10 10

y l = 3 3 3
x2 = 14 15 16
y2 = 4 4 4

10 10 10

y i = 4 4 4
x2 = 14 15 16
y2 = 5 5 5

10 10 10

y l = 5 5 5
x2 = 14 15 16
y2 = 6 6 6

10 10 10

y i = 6 6 6
x2 = 14 15 16
y2 = 7 7 7

10 10 10

0 0 0 0
17 18 19 20
1 1 1 1

10 10 10 10

1 1 1 1
17 18 19 20
2 2 2 2

10 10 10 10

2 2 2 2
17 18 19 20
3 3 3 3

10 10 10 10

3 3 3 3
17 18 19 20
4 4 4 4

10 10 10 10

4 4 4 4
17 18 19 20
5 5 5 5

10 10 10 10

5 5 5 5
17 18 19 20
6 6 6 6

10 10 10 10

6 6 6 6
17 18 19 20
7 7 7 7

10 10 10 10

y l = 7 7 7
x2 = 14 15 16
y2 = 8 8 8

10 10 10

y l = 8 8 8
x2 = 14 15 16
y2 = 9 9 9

10 10 10

y l = 9 9 9
x2 = 14 15 16
y2 = 10 10 10

10 10 10

(2 0 -x l ) £ ( l0 - y l)
y \= 0

7 7 7 7
17 18 19 20
8 8 8 8

10 10 10 10

8 8 8 8
17 18 19 20
9 9 9 9

10 10 10 10

9 9 9 9
17 18 19 20
10 10 10 10

10 10 10 10

7(55) = 385

178



www.manaraa.com

For xl=14
yi = 0 0 0 0 0 0
x2 = 15 16 17 18 19 20ii 1 1 1 1 1 1

10 10 10 10 10 10

'y i = 1 1 1 1 1 1
x2 = 15 16 17 18 19 20

<y2 = 2 2 2 2 2 2

10 10 10 10 10 10

yi = 2 2 2 2 2 2
x2 = 15 16 17 18 19 20IIS

i 3 3 3 3 3 3

10 10 10 10 10 10

'y i = 3 3 3 3 3 3
x2 = 15 16 17 18 19 20

• y2 = 4 4 4 4 4 4

10 10 10 10 10 10

yi = 4 4 4 4 4 4
x2 = 15 16 17 18 19 20

< y2 = 5 5 5 5 5 5

. 10 10 10 10 10 10

>1 = 5 5 5 5 5 5
x2 = 15 16 17 18 19 20

<y2 = 6 6 6 6 6 6

10 10 10 10 10 10

'y i = 6 6 6 6 6 6
x2 = 15 16 17 18 19 20

• y2 = 7 7 7 7 7 7

10 10 10 10 10 10

yi = 7 7 7 7 7 7
x2 = 15 16 17 18 19 20

< y2 = 8 8 8 8 8 8

10 10 10 10 10 10

yi = 8 8 8 8 8 8
x2 = 15 16 17 18 19 20

• y2 = 9 9 9 9 9 9

10 10 10 10 10 10

yi = 9 9 9 9 9 9
x2 = 15 16 17 18 19 20

- y2 = 10 10 10 10 10 10

<
10 10 10 10 10 10

(20 --x l)£ ( l0 - .y l)
><1=0

= 6(55)= 330
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For x l==15

fy i = 0 0 0 0 0
x2 = 16 17 18 19 20

« y2 = 1 1 1 1 1

10 10 10 10 10

y i= 1 1 1 1 1
x2 = 16 17 18 19 20

< y2 = 2 2 2 2 2

10 10 10 10 10

yi = 2 2 2 2 2
x2 = 16 17 18 19 20

< y2 = 3 3 3 3 3

10 10 10 10 10

'y l = 3 3 3 3 3
x2 = 16 17 18 19 20

.y 2  = 4 4 4 4 4

10 10 10 10 10

y i= 4 4 4 4 4
x2 = 16 17 18 19 20

« y2 = 5 5 5 5 5

10 10 10 10 10

fy i = 5 5 5 5 5
x2 = 16 17 18 19 20

< y2 = 6 6 6 6 6

10 10 10 10 10

yi = 6 6 6 6 6
x2 = 16 17 18 19 20

« y2 = 7 7 7 7 7

10 10 10 10 10

> 1  = 7 7 7 7 7
x2 = 16 17 18 19 20

<y2 = 8 8 8 8 8

10 10 10 10 10

yi = 8 8 8 8 8
x2 = 16 17 18 19 20

<y2 = 9 9 9 9 9

10 10 10 10 10

yi = 9 9 9 9 9
x2 = 16 17 18 19 20

• y2 = 10 10 10 10 10

10 10 10 10 10

(20 -  x l ) £  (l 0 -  j l )  = 5 (55) = 275
yl=0
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For xl=16
[y i= 0 0 0 0 yi = 7 7 7 7
x2 = 17 18 19 20 x2 = 17 18 19 20

II 1 1 1 1 y2 = 8 8 8 8

10 10 10 10 10 10 10 10

y i= 1 1 1 1 yi = 8 8 8 8
x2 = 17 18 19 20 x2 = 17 18 19 20

« y2 = 2 2 2 2 y2 = 9 9 9 9

10 10 10 10 10 10 10 10

'yi = 2 2 2 2 yi = 9 9 9 9
x2 = 17 18 19 20 x2 = 17 18 19 20

II 3 3 3 3 y2 = 10 10 10 10

10 10 10 10 10 10 10 10

ii 
ii

i—i (NX

3
17

3
18

3
19

1OW
'

co 
^ - *D L(io- yi) =II 4̂

< y2 = 4 4 4 4
1̂=0

10 10 10 10

y l = 4 4 4 4
x2 = 17 18 19 20

< y2 = 5 5 5 5

10 10 10 10

yi = 5 5 5 5
x2 = 17 18 19 20

< y l  = 6 6 6 6

10 10 10 10

yi = 6 6 6 6
x2 = 17 18 19 20

< y2 = 7 7 7 7

10 10 10 10
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For xl==17
y l = 0 0 0 yi = 7 7 7
x2 = 18 19 20 x2 = 18 19 20

< y2 = 1 1 1 y2 = 8 8 8

10 10 10 10 10 10

y i = 1 1 1 yi = 8 8 8
x2 = 18 19 20 x2 = 18 19 20

- y2 = 2 2 2 y2 = 9 9 9

10 10 10 10 10 10

y l = 2 2 2 y i = 9 9 9
x2 = 18 19 20 x2 = 18 19 20

< y2 = 3 3 3 y2 = 10 10 10

10 10 10 10 10 10

yl = 
x2 =

3
18

3
19

3 (20- 
20 v - * i ) i ( i ° -

vl=0
■yl)

" y2 = 4 4 4

10 10 10

y l = 4 4 4
x2 = 18 19 20

<y2 = 5 5 5

10 10 10

yl = 5 5 5
x2 = 18 19 20

II 6 6 6

10 10 10

y i = 6 6 6
x2 = 18 19 20

IIS
i 7 7 7

10 10 10
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For xl==18
[y l = 0 0 yi = 7 7
x2 = 19 20 x2 = 19 20

< y2 - 1 1 y2 = 8 8

10 10 10 10

'y l = 1 1 yi = 8 8
x2 = 19 20 x2 = 19 20

< y2 = 2 2 ■<y2 = 9 9

10 10 10 10

y i = 2 2 yi = 9 9
x2 = 19 20 x2 = 19 20

<y2 = 3 3 y2 = 10 10

10 10 10 10

9
y l = 
x2 =

3
19

3
20

(20- 1

!M
0 1

• y2 = 4 4

10 10

y i = 4 4
x2 = 19 20

<y2 = 5 5

10 10

fy i  = 5 5
x2 = 19 20

- y2 = 6 6

10 10

yi = 6 6
x2 = 19 20

<y2 = 7 7

10 10
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For xl=19
y l = 0
x2 = 20

■ y2 = 1

10

y l=  1 
x2 = 20

• y2 = 2

10

fy l = 2
x2= 20

' y2 = 3

10

fy l = 3
x2 = 20

■ y2 = 4

10

y l =  4 
x2 = 20

< y 2 =  5

10

fy l=  5 
x2= 20

• y2 = 6

10

yl = 6
x2= 20

< y2 = 7

10

yi= 7
x2 = 20

< y2 = 8

10

y l = 8
x2 = 20

- y2 = 9

10

y l = 9
x2 = 20

< y2 = 10

10

(20 -  x l) ( lO -y l)  = 1 (55) = 55
>>i=o
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FIGURE 29. Area of delamination of plate dimension 8cm x 4cm with mesh size 20x10.
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APPENDIX F 

FINITE ELEMENT DATA SETS TRAINING TIM E
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Table 22. FEA Data Sets Collection for Plate Dimension 8 cm x 4 cm

Mesh
Size

Percentage of 
Delamination Files Name Data

Sets Training Time

20% fptfreq 10x5_SID8x4_20pc_z0123 12 49 sec
10x5 60% fptfreq 10x5_SID8x4_60pc_z0123 504 39 min

100% fptfreq 10x5_SID8x4_l OOpczO 123 3,300 5 hrs 07 min

12x6 100% fptfreq 12x6_SID8x4_ 1 OOpczO 123 6,552 25 hrs 10 min
16x8 100% fptfreq 16x8_SID8x4_l OOpczO 123 19,584 14 days 17 hrs 37 min
18x9 100% fptfreq 18x9_SID8x4_ 1 OOpczO 123 30,780 40 days 17 hrs 19 min

20% fptfreq20x 10_SID8x4_20pc_z0123 120 5 hrs 09 min
40% fptffeq20x 10_SID8x4_40pc_z0123 1,440 2 days 17 hrs 31 min

20x10 60% Q)tfreq20x 10_SID8x4_60pc_z0123 6,552 13 days 9 hrs 15 min
80% 4>tffeq20x 10_SID8x4_80pc_z0123 19,584 43 days 16 hrs 25 min
100% fjrtffeq20x 10_SID8x4_l OOpczO 123 46,200 114 days 2 hrs 25 min
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Finite Element Data Sets Collection for Plate Dimension 8cm x 4cm

Mesh-size = 10x5
File name

20 percent
1 fptfreq 10x5_SID8x4_20pc_z0123

60 percent
1 fptfreq 10x5_SID8x4_60pc_z0123

100 percent
1 fptfreq 10x5_SID8x4_l OOpczO 123

Data sets Training time

12 49 sec

504 2,324.4 sec

3,300 18,418 sec

Training time

49 sec

39 min 

5 hrs 07 min

Mesh-size = 12x6
File name Data sets Training time Training time

100 percent
1 fptfreql2x6_SID8x4_100pc_z0123 6,552 90,577 sec 25 hrs 10 min

Mesh-size = 16x8
File name Data sets Training time Training time

100 percent
1 fptfreq 16x8_SID8x4_l 00pc_z0_x0-2 1,620 114,700 sec 31 hrs 52 min
2 fptfreq 16x8_SID8x4_ 100pc_z0_x3 -6 1,656 105,500 sec 29 hrs 18 min
3 fptfreq 16x8_SID8x4_ 100pc_z0_x7-15 1,620 91,277 sec 25 hrs 22 min

Data and elapsed time for layer 0 4, 896 311,477 sec 86 hrs 31 min

4 fptfreq 16x8_SID8x4_ 1 OOpcz 1 _x0-2 1,620 116,050 sec 32 hrs 14 min
5 fptfreq 16x8_SID8x4_ 1 OOpcz 1 _x3 -6 1,656 108,340 sec 30 hrs 06 min
6 fptfreql 6x8_SID8x4_l 00pc_zl_x7-l 5 1,620 92,474 sec 25 hrs 41 min

Data and elapsed time for layer 1 4, 896 316,864 sec 88 hrs 01 min

7 fptfreq 16x8_SID8x4_ 100pc_z2_x0-2 1,620 115,110 sec 31 hrs 59 min
8 fptfreql 6x8_SID8x4_l 00pc_z2_x3-6 1,656 108,670 sec 30 hrs 11 min
9 fptfreql6x8_SID8x4_100pc_z2_x7-l 5 1,620 91,407 sec 25 hrs 23 min

Data and elapsed time for layer 2 4, 896 315,187 sec 87 hrs 33 min

10 fptfreq 16x8_SID8x4_ 100pc_z3_x0-2 1,620 116,190 sec 32 hrs 17 min
11 fptfreq 16x8_SID8x4_ 100pc_z3_x3 -6 1,656 120,990 sec 33 hrs 36 min
12 fptfreq 16x8_SID8x4_ 100pc_z3_x7-15 1,620 92,332 sec 25 hrs 39 min

Data and elapsed time for layer 3 4, 896 329,512 sec 91 hrs 32 min
Total data and elapsed time for 4 layers 19,584 1,273,040 sec 14 days 17 hrs 37 min

Mesh-size = 18x9
File name

100 percent
1 fptfreq 18x9_SID8x4_l OOpczOxO-1
2 fptfreq 18x9_SID8x4_l 00pc_z0_x2-4

Data sets Training time

1,575
2,025

188
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3 fptfreql 8x9_SID8x4_l 00pc_z0_x5-8 2,070 228,410 sec 63 hrs 27 min
4 fptfreql 8x9_SID8x4_l 00pc_z0_x9-10 765 84,098 sec 23 hrs 22 min
5 fptfreq 18x9SID8x4 1 OOpczOx 11-12 585 60,934 sec 16 hrs 56 min
6 fptfreq 18x9_SID8x4_ 1 OOpczOx 13-17 675 66,777 sec 18 hrs 33 min

Data and elapsed time for layer 0 7,695 883,259 sec 245 hrs 21 min

7 fptfreql 8x9_SID8x4_l OOpczlxO-1 1,575 205,870 sec 57 hrs 11 min
8 fptfreq 18x9_SID8x4_l 00pc_zl_x2-4 2,025 247,620 sec 68 hrs 47 min
9 fptfreq 18x9_SID8x4_l 00pc_zl_x5-8 2,070 233,460 sec 64 hrs 51 min
10 fptfreq 18x9_SID8x4_ 1 OOpcz 1 _x9-10 765 85,385 sec 23 hrs 43 min
11 fptfreq 18x9SID8x4 1 OOpcz 1 x 11-12 585 62,246 sec 17 hrs 17 min
12 fptfreq 18x9_SID8x4_l O O pczlx  13-17 675 66,364 sec 18 hrs 26 min

Data and elapsed time for layer 1 7,695 900,945 sec 250 hrs 16 min

13 fptfreq 18x9_SID8x4_l 00pc_z2_x0-1 1,575 184,020 sec 51 hrs 07 min
14 fptfreq 18x9_SID8x4_ 100pc_z2_x2-4 2,025 223,390 sec 62 hrs 03 min
15 fptfreq 18x9_SID8x4_l 00pc_z2_x5-8 2,070 211,110 sec 58 hrs 39 min
16 fptfreq 18x9_SID8x4_l 00pc_z2_x9-10 765 83,587 sec 23 hrs 13 min
17 fptfreql8x9_SID8x4_100pc_z2_xl 1-12 585 61,241 sec 17 hrs 00 min
18 fptfreq 18x9_SID8x4_ 100pc_z2_x 13-17 675 66,092 sec 18 hrs 22 min

Data and elapsed time for layer 2 7,695 829,440 sec 230 hrs 24 min

19 fptfreq 18x9_SID8x4_l 00pc_z3_x0-1 1,575 206,480 sec 57 hrs 21 min
20 fptfreql 8x9_SID8x4_100pc_z3_x2-4 2,025 249,420 sec 69 hrsl7 min
21 fptfreq 18x9_SID8x4_l 00pc_z3_x5-8 2,070 234,670 sec 65 hrs 11 min
22 fptfreq 18x9_SID8x4_l 00pc_z3_x9-10 765 85,140 sec 23 hrs 39 min
23 fptfreql 8x9_SID8x4_100pc_z3_xl 1-12 585 62,643 sec 17 hrs 24 min
24 fptfreq 18x9_SID8x4_ 100pc_z3_x 13-17 675 66,347 sec 18 hrs 26 min

Data and elapsed time for layer 3 7,695 904,700 sec 251 hrs 18 min
Total data and elapsed time for 4 layers 

Mesh-size = 20x10

30,780 3,518,344 sec 40 days 17 hrs 19 min

File name
20 percent

Data sets Training time Training time

1 fptffeq20x 10_SID8x4_20pc_z0123 

40 percent

120 18,523.9 sec 5 hrs 09 min

1 fptfreq20x 10_SID8x4_40pc_z0 360 58,638.9 sec 16 hrs 17 min
2 fptfreq20x 10_SID8x4_40pc_zl 360 58,786.7 sec 16 hrs 20 min
3 fptfreq20x 10_SID8x4_40pc_z2 360 59,814.6 sec 16 hrs 40 min
4 fptfreq20x 10_SID8x4_40pc_z3 360 58,591.0 sec 16 hrs 17 min

Total data and elapsed time for 4 layers 

60 percent

1,440 235,831.2 sec 2 days 17 hrs 31 min

1 fptfreq20x 10_SID8x4_60pc_z0_x4-5 483 88,742 sec 24 hrs 39 min
2 fptfreq20x 10_SID8x4_60pc_z0_x6-7 399 71,769.8 sec 19 hrs 56 min
3 fptfreq20x 10_SID8x4_60pc_z0_x8-10 441 76,139.5 sec 21 hrs 9 min
4 fptfreq20x 10_SID8x4_60pc_zO_x 11-15 315 51,005.4 sec 14 hrs 10 min

Data and elapsed time for layer 0 1,638

189
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5 fptffeq20x 10_SID8x4_60pc_zl_x4-5 483 89,503.9 sec 24 hrs 52 min
6 fptff eq2 Ox 1 O S ID8x4 60pcz 1 x6-7 399 73,241.4 sec 20 hrs 21 min
7 fptffeq20xl0_SID8x4_60pc_zl_x8-l 0 441 76,727.3 sec 21 hrs 19 min
8 fptffeq20x 10SID8x4 6 0 p c z lx  11-15 315 51,203.0 sec 14 hrs 13 min

Data and elapsed time for layer 1 1,638 290,675.6 sec 80 hrs 45 min

9 fptff eq20x 10_SID8x4_60pc_z2_x4-5 483 88,941.4 sec 24 hrs 42 min
10 fptff eq20x 10_SID8x4_60pc_z2_x6-7 399 72,182.8 sec 20 hrs 03 min
11 fptfr eq20x 10_SID8x4_60pc_z2_x8-10 441 76,363.5 sec 21 hrs 13 min
12 fptffeq20x 10_SID8x4 6 0 p c z 2 x  11-15 315 51,493.8 sec 14 hrs 18 min

Data and elapsed time for layer 2 1,638 288,981.5 sec 80 hrs 16 min

13 fptfreq20x 10SID8x4 60pcz3x4-5 483 89,190.7 sec 24 hrs 47 min
14 fptffeq20x 10_SID8x4_60pc_z3_x6-7 399 72,252.6 sec 20 hrs 04 min
15 fptffeq20x 10_SID8x4_60pc_z3_x8-10 441 76,605.0 sec 21 hrs 17 min
16 fptfreq20x 10_SID8x4_60pc_z3_x 11-15 315 51,135.7 sec 14 hrs 12 min

Data and elapsed time for layer 3 1,638 289,184.0 sec 80 hrs 20 min
Total data and elapsed time for 4 layers 

80 percent

6,552 1,156,497.8 sec 13 days 9 hrs 15 min

1 fptfr eq20x 10_SID8x4_80pc_z0_x2 576 120,148.0 sec 33 hrs 22 min
2 fptfreq20x 10_SID8x4_80pc_z0_x3 540 110,607.0 sec 30 hrs 43 min
3 fptffeq20x 10_SID8x4_80pc_z0_x4 504 100,845.0 sec 28 hrs 01 min
4 fptffeq20x 10_SID8x4_80pc_z0_x5 468 92,269.3 sec 25 hrs 38 min
5 fptffeq20x 10_SID8x4_80pc_z0_x6 432 85,194.6 sec 23 hrs 40 min
6 fptff eq20x 10_SID8x4_80pc_z0_x7 396 76,477.5 sec 21 hrs 15 min
7 fptffeq20x 10_SID8x4_80pc_z0_x8 360 67,236.2 sec 18 hrs 41 min
8 fptfreq20x 10SID8x4 8 0 pcz0x9 324 59,507.6 sec 16 hrs 32 min
9 fptffeq20x 10SID8x4 8 0 p c z 0 x  10 288 52,214.3 sec 14 hrs 30 min
10 fptffeq20x 10_SID8x4 80pc_z0x 11 252 44,904.1 sec 12 hrs 29 min
11 fptffeq20x 10_SID8x4_80pc_z0_x 12 216 38,006.4 sec 10 hrs 33 min
12 fptfreq20x 10_SID8x4_80pc_z0_x 13 180 30,401.3 sec 8 hrs 27 min
13 fptff eq20x 10_SID8x4_80pc_z0_x 14 144 24,058.5 sec 6 hrs 41 min
14 fptfr eq20x 10_SID8x4_80pc_z0_x 15 108 17,470.7 sec 4 hrs 51 min
15 fptffeq20x 10SID8x4 8 0 p c z 0 x  16 72 11,348.7 sec 3 hrs 09 min
16 fptfreq20x 10SID8x4 80pc_z0x 17 36 5,592.7 sec 1 hrs 33 min

Data and elapsed time for layer 0 4,896 936,281.9 sec 260 hrs 05 min

1 fptffeq20xl 0_SID8x4_80pc_zl_x2 576 121,609.0 sec 33 hrs 47 min
2 fptffeq20x 10_SID8x4_80pc_zl_x3 540 112,499.0 sec 31 hrs 15 min
3 fptfreq20xl 0_SID8x4_80pc_zl_x4 504 103,467.0 sec 28 hrs 44 min
4 fptffeq20x 10SID8x4 8 0 p c z lx 5 468 93,688.9 sec 26 hrs 01 min
5 fptffeq20x 10_SID8x4_80pc_z 1 _x6 432 86,417.1 sec 24 hrs 00 min
6 fptffeq20x 10_SID8x4_80pc_z 1x7 396 78,265.4 sec 21 hrs 44 min
7 fptfreq20x 10_SID8x4_80pc_zl_x8 360 67,945.8 sec 18 hrs 52 min
8 fptfreq20x 10SID8x4 80pcz 1 _x9 324 60,206.4 sec 16 hrs 43 min
9 fptfreq20x 10SID8x4 80pcz 1x10 288 52,722.6 sec 14 hrs 39 min
10 fptfreq20x 10SID8x4_80pczl_x 11 252 45,267.5 sec 12 hrs 34 min
11 fjptfreq20x 10SID8x4 80pcz 1x12 216 38,227.0 sec 10 hrs 37 min
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12
13
14
15
16

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16

fptfreq20x 10_SID8x4_80pc_zl_x 13 
fptff eq20x 10_SID8x4_80pc_zl_x 14 
fptfreq20x 10_SID8x4_80pc_zl_xl 5 
fptff eq20xl0_SID8x4_80pc_zl_xl 6 
fptfreq20xl0_SID8x4_80pc_zl_xl 7 
Data and elapsed time for layer 1

fptfreq20x 10_SID8x4 
fptff eq20x 10_SID8x4 
fptffeq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptffeq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptffeq20x 10_SID8x4 
fptfreq20x 10_SID8x4 
fptffeq20x 10_SID8x4 
fptffeq20x 10_SID8x4 
Data and elapsed time

_80pc_z2_x2 
80pc_z2_x3 
80pc_z2_x4 
80pcz2x5  
80pcz2x6  
80pc_z2_x7 
80pc_z2_x8 
8 0pcz2x9  
80pc_z2_xl0 
80pc_z2_xl 1 
80pc_z2_xl2 
80pc_z2_xl3 
80pc_z2_xl4 
80pcz2_xl5 
8 0 p c z 2 x l6  
80pc_z2_xl7 

for layer 2

Q)tfreq20x 10_SID8x4_80pc_z3_x2 
fptfreq20x 10_SID8x4_80pc_z3_x3 
fptfr eq2 Ox 10_SID8x4_80pc_z3_x4 
fptfreq20x 10_SID8x4_80pc_z3_x5 
lptfreq20x 10_SID8x4_80pc_z3_x6 
fptfreq20x 10_SID8x4_80pc_z3_x7 
fptfreq20x 10_SID8x4_80pc_z3_x8 
fptfreq20xl 0_SID8x4 80pcz3x9  
fptfreq20x 10_SID8x4_80pc_z3_x 10 
fptfreq20x 10SID8x4 80pcz3_x 11 
fptfreq20x 10_SID8x4_80pc_z3_x 12 
fptfreq20x 10_SID8x4_80pc_z3_x 13 
fptfreq20x 10_SID8x4_80pc_z3_x 14 
fptffeq20x 10_SID8x4_80pc_z3_x 15 
fptff eq20x 10_SID8x4_80pc_z3_x 16 
fptffeq20x 10_SID8x4_80pc_z3_x 17

180 30,622.4 sec
144 24,517.5 sec
108 17,540.2 sec
72 11,401.3 sec
36 5,573.1 sec

4,896 949,970.2 sec

576 120,825.0 sec
540 111,410.0 sec
504 101,610.0 sec
468 93,553.5 sec
432 85,704.4 sec
396 77,242.1 sec
360 68,394.5 sec
324 59,687.8 sec
288 52,384.5 sec
252 44,884.3 sec
216 37,983.1 sec
180 30,782.5 sec
144 24,149.9 sec
108 17,475.5 sec
72 11,489.9 sec
36 5,569.8 sec

4,896 943,146.8 sec

576 121,710.0 sec
540 111,874.0 sec
504 102,299.0 sec
468 93,168.0 sec
432 85,238.5 sec
396 77,079.0 sec
360 68,054.4 sec
324 59,893.9 sec
288 53,063.8 sec
252 45,196.0 sec
216 38,109.0 sec
180 30,547.6 sec
144 24,174.3 sec
108 17,534.3 sec
72 11,388.5 sec
36 5,565.3 sec

4,896 944,895.6 sec

8 hrs 30 min 
6 hrs 49 min 
4 hrs 52 min
3 hrs 10 min 
1 hrs 33 min

263 hrs 53 min

33 hrs 34 min
30 hrs 57 min 
28 hrs 14 min 
25 hrs 59 min 
23 hrs 48 min 
21 hrs 27 min 
19 hrs 00 min 
16 hrs 35 min 
14 hrs 33 min 
12 hrs 28 min 
10 hrs 33 min
8 hrs 33 min 
6 hrs 43 min
4 hrs 51 min
3 hrs 11 min 
1 hrs 33 min

261 hrs 59 min

33 hrs 48 min
31 hrs 05 min 
28 hrs 25 min 
25 hrs 53 min 
23 hrs 41 min 
21 hrs 25 min 
18 hrs 54 min 
16 hrs 38 min 
14 hrs 44 min 
12 hrs 33 min 
10 hrs 35 min
8 hrs 29 min 
6 hrs 43 min
4 hrs 52 min 
3 hrs 10 min 
1 hrs 33 min

262 hrs 28 min
Total data and elapsed time for 4 layers 

100 percent

19,584 3,774,294.5 sec 43 days 16 hrs 25 min

1 fptff eq20x 10_SID8x4_ 1 OOpczOxO 1,100 260,700 sec 72 hrs 25 min
2 fptffeq20x 10_SID8x4_l OOpczOx 1 1,045 242,860 sec 67 hrs 28 min
3 fptfreq20x 10_SID8x4_l 00pc_z0_x2 990 226,080 sec 62 hrs 48 min
4 fptfreq20x 10_SID8x4_l 00pc_z0_x3 935 208,520 sec 57 hrs 55 min
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5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49

fptfreq20xl 0SID8x4 100pc_z0_x4 880 172,430 sec
fptfreq20x 10_SID8x4_l 00pc_z0_x5 825 192,860 sec
fptfreq20x 10_SID8x4_l 00pc_z0_x6 770 176,230 sec
fptffeq20x 10_SID8x4_ 100pc_z0_x7 715 149,410 sec
fptfreq20x 10_SID8x4_l 00pc_z0_x8 660 134,580 sec
fptfreq20x 10_SID8x4_l 00pc_z0_x9 605 120,370 sec
fptfr eq20x 10_SID8x4_l OOpczOx 10 550 108,890 sec
fptfr eq20x 10_SID8x4_l OOpczOx 11 495 94,919 sec
fptfreq20x 10_SID8x4_l OOpczOx 12 440 82,554 sec
fptfreq20x 10_SID8x4_l OOpczOx 13 385 70,822 sec
fptfreq20x 10_SID8x4_ 1 OOpczOx 14 330 60,022 sec
fptfreq20x 10_SID8x4_l OOpczOx 15 275 48,460 sec
fptfreq20x 10_SID8x4_l OOpczOxl6 220 40,726 sec
fptfreq20x 10_SID8x4_l OOpczOx 17 165 29,154 sec
fptfreq20xl 0_SID8x4_l OOpczOxl 8 110 17,613 sec
fptfreq20x 10_SID8x4_ 1 OOpczOx 19 55 8,632 sec
Data and elapsed time for layer 0 11,550 2,445,832 sec

fptfreq20x 10_SID8x4_ 1 OOpcz 1 _xO 1,100 266,300 sec
fptfreq20x 10_SID8x4_l O O pczlx l 1,045 248,280 sec
fptffeq20x 10_SID8x4_l OOpcz 1 _x2 990 230,760 sec
fptfreq20x 10_SID8x4_ 1 OOpcz 1 _x3 935 212,850 sec
fptfreq20x 10_SID8x4_l 00pc_zl_x4 880 176,520 sec
fptfreq20x 10_SID8x4_ 1 OOpcz 1 _x5 825 194,470 sec
fptfreq20x 10_SID8x4_l 00pc_zl_x6 770 179,670 sec
lptfreq20x 10_SID8x4_l 00pc_zl_x7 715 152,180 sec
fptfreq20x 10_SID8x4_l OOpcz 1 _x8 660 136,360 sec
iptfreq20x 10_SID8x4_l OOpcz 1 _x9 605 122,170 sec
fptfreq20x 10_SID8x4_ 1 OOpcz 1x10 550 109,360 sec
fptfreq20x 10SID8x4 1 O O pczlx  11 495 95,897 sec
fptfreq20x 10_SID8x4_l 00pc_zl_xl2 440 83,386 sec
fptfreq20xl 0_SID8x4_l O O pczlx l 3 385 71,541 sec
ft)tfreq20xl0_SID8x4_100pc_zl_xl4 330 60,480 sec
fptfreq20x 10_SID8x4_ 1 OOpcz 1x15 275 48,337 sec
fptfreq20x 10_SID8x4_ 1 OOpcz 1x16 220 40,375 sec
fptfreq20x 10_SID8x4_ 1 OOpcz 1x17 165 29,562 sec
fptfreq20x 10_SID8x4_l O O pczlx  18 110 17,694 sec
fptfreq20x 10_SID8x4_l OOpcz 1x19 55 8,555 sec
Data and elapsed time for layer 1 11,550 2,484,747 sec

fptff eq20x 10_SID8x4_ 100pc_z2_x0 1,100 266,500 sec
fptffeq20x 10_SID8x4_l 00pc_z2_x 1 1,045 248,060 sec
fptfreq20x 10_SID8x4_ 100pc_z2_x2 990 230,370 sec
fptfreq20x 10_SID8x4_l 00pc_z2_x3 935 211,240 sec
fptfreq20x 10_SID8x4_l 00pc_z2_x4 880 174,630 sec
fptffeq20xl0_SID8x4_100pc_z2_x5 825 195,950 sec
fptfreq20x 10_SID8x4_ 100pc_z2_x6 770 177,040 sec
fptfreq20x 10_SID8x4_ 100pc_z2_x7 715 150,950 sec
fptfreq20x 10_SID8x4_ 100pc_z2_x8 660 135,440 sec
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50 Iptfreq20xl 0_SID8x4_l 00pc_z2_x9 605 121,140 sec 33 hrs 39 min
51 fptfreq20x 10_SID8x4_l 00pc_z2_x 10 550 109,420 sec 30 hrs 24 min
52 fptffeq20xl0_SID8x4_100pc_z2_xl 1 495 94,960 sec 26 hrs 23 min
53 fptfreq20x 10_SID8x4_ 100pc_z2_x 12 440 82,777 sec 23 hrs 00 min
54 fptffeq20x 10_SID8x4_ 100pc_z2_x 13 385 70,963 sec 19 hrs 43 min
55 fptfreq20x 10_SID8x4_ 100pc_z2_x 14 330 60,245 sec 16 hrs 44 min
56 fptff eq20x 10SID8x4 100pcz2x  15 275 48,689 sec 13 hrs 31 min
57 fptfreq20x 10_SID8x4_l 00pc_z2_x 16 220 40,237 sec 11 hrs 11 min
58 fptfreq20x 10_SID8x4_ 100pc_z2_x 17 165 29,270 sec 08 hrs 08 min
59 fptfreq20x 10_SID8x4_ 100pc_z2_x 18 110 17,618 sec 04 hrs 54 min
60 fptfreq20x 10_SID8x4_ 100pc_z2_x 19 55 8,550 sec 02 hrs 22 min

Data and elapsed time for layer 2 11,550 2,474,049 sec 687 hrs 14 min

61 fptffeq20x 10_SID8x4_ 100pc_z3_x0 1,100 238,660 sec 66 hrs 18 min
62 fptfreq20x 10_SID8x4_l 00pc_z3_x 1 1,045 247,470 sec 68 hrs 45 min
63 fptfreq20x 10_SID8x4_l 00pc_z3_x2 990 230,060 sec 63 hrs 54 min
64 fptfreq20x 10_SID8x4_ 100pc_z3_x3 935 212,530 sec 59 hrs 02 min
65 fptffeq20x 10_SID8x4_l 00pc_z3_x4 880 176,570 sec 49 hrs 03 min
66 fptffeq20x 10_SID8x4_l 00pc_z3_x5 825 194,260 sec 53 hrs 58 min
67 fptffeq20x 10_SID8x4_ 100pc_z3_x6 770 177,880 sec 49 hrs 25 min
68 fptfreq20x 10_SID8x4_l 00pc_z3_x7 715 150,510 sec 41 hrs 49 min
69 fptfreq20x 10_SID8x4_l 00pc_z3_x8 660 136,550 sec 37 hrs 56 min
70 fptfreq20x 10_SID8x4_l 00pc_z3_x9 605 121,880 sec 33 hrs 51 min
71 fptfreq20x 10_SID8x4_ 100pc_z3_x 10 550 108,810 sec 30 hrs 14 min
72 lptfireq20x 10SID8x4 100pc_z3x 11 495 95,959 sec 26 hrs 39 min
73 iptfreq20x 10_SID8x4_l 00pc_z3_x 12 440 83,251 sec 23 hrs 08 min
74 iptfireq20x 10_SID8x4_l 00pc_z3_xl 3 385 71,286 sec 19 hrs 48 min
75 fptfreq20x 10_SID8x4_l 00pc_z3_x 14 330 59,972 sec 16 hrs 40 min
76 fptfreq20x 10_SID8x4_l 00pc_z3_x 15 275 52,061 sec 14 hrs 28 min
77 fptfreq20x 10_SID8x4_l 00pc_z3_x 16 220 40,283 sec 11 hrs 11 min
78 fptfreq20x 10_SID8x4_ 100pc_z3_x 17 165 28,943 sec 08 hrs 02 min
79 fptfreq20x 10_SID8x4_l 00pc_z3_x 18 110 17,650 sec 04 hrs 54 min
80 fptfreq20x 10_SID8x4_l 00pc_z3_x 19 55 9,113 sec 02 hrs 32 min

Data and elapsed time for layer 3 11,550 2,453,698 sec 681 hrs 35 min
Total data and elapsed time for 4 layers 46,200 9,858,326 sec 114 days 2 hrs 25 min
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